Differentiated Instruction

L1 Level 1 activities should be appropriate for students with learning difficulties.

L2 Level 2 activities should be within the ability range of all students.

L3 Level 3 activities are designed for above-average students.

Section/Objectives

Chapter Opener

See page 14T for a key to the standards.

<table>
<thead>
<tr>
<th>National</th>
<th>State/Local</th>
</tr>
</thead>
</table>

Section 18.1

1. **Solve** problems involving refraction.
2. **Explain** total internal reflection.
3. **Explain** some optical effects caused by refraction.

Standards

UCP.1, UCP.2, UCP.3, A.1, A.2, B6

Lab and Demo Planning

Student Lab:

- **Launch Lab,** p. 485: three 400-mL beakers, 150 mL of cooking oil, 150 mL of corn syrup, 600 mL of water, three straws
- **Additional Mini Lab,** p. 491: garden hose with fine spray nozzle

Teacher Demonstration:

- **Quick Demo,** p. 489: pencil; large, rectangular, transparent, plastic block
- **Quick Demo,** p. 490: 1-L plastic soda bottle, laser pointer, plastic tub, water
- **Quick Demo,** p. 491: water, spherical flask, flashlight, cardboard with hole

Section 18.2

4. **Describe** how real and virtual images are formed by single convex and concave lenses.
5. **Locate** images formed by lenses using ray tracing and equations.
6. **Explain** how chromatic aberration can be reduced.

Standards

UCP.1, UCP.2, UCP.3, B6

Lab and Demo Planning

Student Lab:

- **Mini Lab,** p. 495: convex lens, clay, small lamp
- **Additional Mini Lab,** p. 497: large test tube, small bolt

Section 18.3

7. **Describe** how the eye focuses light to form an image.
8. **Explain** nearsightedness and farsightedness and how eyeglass lenses correct these defects.
9. **Describe** the optical systems in some common optical instruments.

Standards

UCP.1, UCP.2, UCP.3, UCP.5, A.1, A.2, B6, C.5, D.4, G.1, G.2

Lab and Demo Planning

Student Lab:

- **Physics Lab,** pp. 504–505: 25-W straight-line filament bulb, lamp base, thin convex lens, meterstick, lens holder, index card
<table>
<thead>
<tr>
<th>Reproducible Resources and Transparencies</th>
<th>Technology</th>
</tr>
</thead>
</table>
| **FAST FILE Chapters 16–20 Resources, Chapter 18**
Transparency 18-1 Master, p. 89
Transparency 18-2 Master, p. 91
Study Guide, pp. 75–80
Enrichment, pp. 87–88
Section 18-1 Quiz, p. 81
Teaching Transparency 18-1
Teaching Transparency 18-2
Connecting Math to Physics | ✮ Interactive Chalkboard CD-ROM:
Section 18.1 Presentation
 TeacherWorks™ CD-ROM |
| **FAST FILE Chapters 16–20 Resources, Chapter 18**
Transparency 18-3 Master, p. 93
Study Guide, pp. 75–80
Reinforcement, p. 85
Section 18-2 Quiz, p. 82
Mini Lab Worksheet, p. 69
Teaching Transparency 18-3
Connecting Math to Physics | ✮ Interactive Chalkboard CD-ROM:
Section 18.2 Presentation
 TeacherWorks™ CD-ROM |
| **FAST FILE Chapters 16–20 Resources, Chapter 18**
Transparency 18-4 Master, p. 95
Study Guide, pp. 75–80
Section 18-3 Quiz, p. 83
Physics Lab Worksheet, pp. 71–74
Teaching Transparency 18-4
Connecting Math to Physics
Laboratory Manual, pp. 93–100
Probeware Laboratory Manual, pp. 37–40
Forensics Laboratory Manual, pp. 43–46 | ✮ Interactive Chalkboard CD-ROM:
Section 18.3 Presentation
 TeacherWorks™ CD-ROM
 Problem of the Week at physicspp.com |

Assessment Resources

FAST FILE Chapters 16–20 Resources, Chapter 18
Chapter Assessment, pp. 97–102
Additional Challenge Problems, p. 18
Physics Test Prep, pp. 35–36
Pre-AP/Critical Thinking, pp. 35–36
Supplemental Problems, pp. 35–36

Technology

✮ Interactive Chalkboard CD-ROM:
Chapter 18 Assessment
 ExamView® Pro Testmaker CD-ROM
 Vocabulary PuzzleMaker
 TeacherWorks™ CD-ROM
 physicspp.com
Chapter Overview

Light changes speed when it passes into a medium with a different index of refraction. This change in speed alters the direction of the light if it strikes the boundary at an angle. Light that passes through a lens may produce an image with a size and an orientation that are different from those of the original object. The eye and optical instruments are able to obtain clear images of small or distant objects because of the refraction of light.

Think About This

If there were no water in the pool, light would travel in a straight line from the trees to your eyes. The trees would look normal. With water in the pool, the changing surface between the trees and your eyes alters the direction of the light. Students will learn about this effect in Section 18.1 of this chapter.

Key Terms

- index of refraction, p. 486
- Snell’s law of refraction, p. 486
- critical angle, p. 489
- total internal reflection, p. 489
- dispersion, p. 491
- lens, p. 493
- convex lens, p. 493
- concave lens, p. 493
- thin lens equation, p. 493
- chromatic aberration, p. 499
- achromatic lens, p. 499
- nearsightedness, p. 501
- farsightedness, p. 501

Think About This

What causes the images of the trees to be wavy?

Purpose

to observe that, as light passes through materials of different densities, it bends by different amounts

Materials

three 400-mL beakers, 150 mL of cooking oil, 150 mL of corn syrup, 600 mL of water, three straws

Teaching Strategies

- One way to ensure a pour in which the liquids do not mix is to hold a spoon upside down above the mixture and to pour the liquid slowly over the back of the spoon.
- The beakers containing syrup and cooking oil should be emptied in a manner that will not cause a plugged drain.
18.1 Refraction of Light

Looking at the surface of a swimming pool on a summer day, you can see sunlight reflecting off the water. You can see objects that are in the pool because some of the sunlight travels into the water and reflects off the objects. When you look closely at objects in the water, however, you will notice that they look distorted. For example, things beneath the surface look closer than normal, the feet of a person standing still in the pool appear to move back and forth, and lines along the bottom of the pool seem to sway with the movement of the water. These effects occur because light changes direction as it passes from water to air.

As you learned in Chapter 16, the path of light is bent as it crosses the boundary between two media due to refraction. The amount of refraction depends on properties of the two media and on the angle at which the light strikes the boundary. As waves travel along the surface of the water, the boundary between the air and water moves up and down, and tilts back and forth. The path of light leaving the water shifts as the boundary moves, causing objects under the surface to appear to waver.

Expected Results All three solutions show a broken straw at each boundary. As the beaker is turned, the breaks in the straw line up when the observer is looking into the beaker straight along the straw.

Analysis Answers will vary. Sample answers: The straw appears to be broken at each boundary, but more so at air boundaries. When the beaker is turned, the breaks close until they are no longer seen when the observer is looking straight along the straw. The liquids are bending light as a glass prism does. Light rays change direction as they leave each liquid, and the degree to which the light is “bent” in each case depends on its angle inside the liquid at the side of the beaker. This observation anticipates the discussion of refraction and varying indices of refraction.

Critical Thinking An object appears to be broken when that object is in two different media with different densities. An object does not appear broken when that object is in one medium. The degree to which the object is “broken” depends on how great the difference in density is.
Optical Illusion

Some beverage glasses are made with thicker walls so that they appear to hold more beverage than they really do. Have students work in pairs to make drawings that show how it works. 🌟 Visual-Spatial

2 TEACH

Concept Development

The Angle of Refraction

Recall with the law of reflection that the angles are measured from the normal to the surface. This is also true with refraction. The angle of refraction is measured with respect to the normal on the opposite side of the surface from the incident ray.

Critical Thinking

3-D Refracted light travels in a plane. Ask students how to determine the plane of travel in a three-dimensional problem. The plane of travel is defined by the incident ray and the normal to the surface. The refracted ray travels in the same plane. L2

Identifying Misconceptions

Direction of Refraction

Students may believe that light always bends toward the normal when it enters a material and away from the normal as it exits the material. Explain that the direction in which the light bends depends on the indices of refraction of the two materials. Light bends toward the normal only if the light goes into a material with a larger index of refraction than the incident medium.

Snell’s Law of Refraction

What happens when you shine a narrow beam of light at the surface of a piece of glass? As you can see in Figure 18-1, it bends as it crosses the boundary from air to glass. The bending of light, called refraction, was first studied by René Descartes and Willebrord Snell around the time of Kepler and Galileo.

To discuss the results of Descartes and Snell, you have to define two angles. The angle of incidence, \(\theta_1 \), is the angle at which the light ray strikes the surface. It is measured from the normal to the surface. The angle of refraction, \(\theta_2 \), is the angle at which the transmitted light leaves the surface. It also is measured with respect to the normal. In 1621, Snell found that when light passed from air into a transparent substance, the sines of the angles were related by the equation \(\sin \theta_1 / \sin \theta_2 = n \). Here \(n \) is a constant that depends on the substance, not on the angles, and is called the index of refraction. The indices of refraction for some substances are listed in Table 18-1. The relationship found by Snell is valid when light goes across a boundary between any two materials. This more general equation is known as Snell’s law of refraction.

Snell’s Law of Refraction

\[n_1 \sin \theta_1 = n_2 \sin \theta_2 \]

The product of the index of refraction of the first medium and the sine of the angle of incidence is equal to the product of the index of refraction of the second medium and the sine of the angle of refraction.

Figure 18-1 shows how Snell’s law applies when light travels through a piece of glass with parallel surfaces, such as a windowpane. The light is refracted both when it enters the glass and again when it leaves the glass. When light goes from air to glass it moves from material with a lower index of refraction to one with a higher index of refraction. That is, \(n_1 < n_2 \). To keep the two sides of the equation equal, one must have \(\sin \theta_1 > \sin \theta_2 \). The light beam is bent toward the normal to the surface.

When light travels from glass to air it moves from material having a higher index of refraction to one with a lower index. In this case, \(n_1 > n_2 \). To keep the two sides of the equation equal one must have \(\sin \theta_1' < \sin \theta_2' \). That is, the light is bent away from the normal. Note that the direction of the ray when it leaves the glass is the same as it was before it struck the glass, but it is shifted from its original position.

<table>
<thead>
<tr>
<th>Table 18-1</th>
<th>Indices of Refraction for Yellow Light ((\lambda = 589) nm in vacuum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>(n)</td>
</tr>
<tr>
<td>Vacuum</td>
<td>1.00</td>
</tr>
<tr>
<td>Air</td>
<td>1.0003</td>
</tr>
<tr>
<td>Water</td>
<td>1.33</td>
</tr>
<tr>
<td>Ethanol</td>
<td>1.36</td>
</tr>
<tr>
<td>Crown glass</td>
<td>1.52</td>
</tr>
<tr>
<td>Quartz</td>
<td>1.54</td>
</tr>
<tr>
<td>Flint glass</td>
<td>1.62</td>
</tr>
<tr>
<td>Diamond</td>
<td>2.42</td>
</tr>
</tbody>
</table>

ACTIVITY

Optical Illusion

Some beverage glasses are made with thicker walls so that they appear to hold more beverage than they really do. Have students work in pairs to make drawings that show how it works. 🌟 Visual-Spatial

18.1 Resource Manager

FAST FILE Chapters 16–20 Resources

Transparency 18-1 Master, p. 89
Transparency 18-2 Master, p. 91
Study Guide, pp. 76–78
Enrichment, p. 87
Section 18-1 Quiz, p. 81
Teaching Transparency 18-1
Teaching Transparency 18-2
Connecting Math to Physics

Technology

TeacherWorks™ CD-ROM
Interactive Chalkboard CD-ROM
ExamView® Pro Testmaker CD-ROM
physicspp.com
physicspp.com/vocabulary_puzzlemaker
Refraction is responsible for the Moon appearing red during a lunar eclipse. A lunar eclipse occurs when Earth blocks sunlight from the Moon. As a result, you might expect the Moon to be completely dark. Instead, light refracts through Earth’s atmosphere and bends around Earth toward the Moon. Recall that Earth’s atmosphere scatters most of the blue and green light. Thus, mostly red light illuminates the Moon. Because the Moon reflects most colors of light equally well, it reflects the red light back to Earth, and therefore the Moon appears to be red.

Atmospheric Refraction Many fundamental principles of spherical and parabolic mirrors and lenses were discovered by Alhazen, an Arabian mathematician (965–1039). Alhazen measured the reflection and refraction of light by mirrors and lenses, and he determined that it was the curvature of a lens or mirror that accounted for focusing. He developed geometric equations for image formation for spherical and parabolic mirrors. Using his knowledge of refraction, he was able to measure the refraction of the atmosphere. This led to two conclusions: first, that when twilight ends, the Sun is already 19° below the horizon, and, second, that the depth of the atmosphere is about 16 km, which is the first accurate estimate recorded.
Using an Analogy

Bending Light Analogies can help students understand the concept of light changing direction when it passes from one material into another. Have students look carefully at Figure 18-2. Explain that the wavefront approaching a region of a higher index of refraction can be compared to two wheels connected by an axle moving from a smooth surface onto a grassy area. When the first wheel touches the grass, it slows down. Because the other wheel is still moving quickly, the direction of wheels and axle bends toward the grassy area.

Concept Development

Light Interaction Students have learned that light slows down when it enters a region with a higher index of refraction, but they may not understand what property of a material causes it to have a higher or lower index of refraction. Help them to understand this by explaining what happens to light as it passes through a material. As light passes through a material, atoms absorb and usually re-emit the light. This interaction between the atoms and the light causes the light to move more slowly through the material than it would through empty space. The time required for an atom to absorb and re-emit the light varies for different types of atoms. This means that different materials have different indices of refraction.

Wave Model of Refraction

The wave model of light was developed almost 200 years after Snell published his research. An understanding that light interacts with atoms when traveling through a medium, such that it moves more slowly than in a vacuum, was achieved three hundred years after Snell’s work. The wave relationship that you learned in Chapter 16 for light traveling through a vacuum, \(\lambda = \frac{c}{f} \), can be rewritten as \(\lambda = \frac{v}{f} \), where \(v \) is the speed of light in any medium and \(\lambda \) is the wavelength. The frequency of light, \(f \), does not change when it crosses a boundary. That is, the number of oscillations per second that arrive at a boundary is the same as the number that leave the boundary and transmit through the refracting medium. So, the wavelength of light, \(\lambda_m \), must decrease when light slows down. Wavelength in a medium is shorter than wavelength in a vacuum.

What happens when light travels from a region with a high speed into one with a low speed, as shown in Figure 18-2a? The diagram in Figure 18-2b shows a beam of light as being made up of a series of parallel, straight wave fronts. Each wave front represents the crest of a wave and is perpendicular to the direction of the beam. The beam strikes the surface at an angle, \(\theta_i \). Consider the triangle PQR. Because the wave fronts are perpendicular to the direction of the beam, \(\angle PQR \) is a right angle and \(\angle QRP \) is equal to \(\theta_i \). Therefore, \(\sin \theta_i \) is equal to the distance between P and Q divided by the distance between P and R.

\[
\sin \theta_i = \frac{PQ}{PR}
\]

The angle of refraction, \(\theta_2 \), can be related in a similar way to the triangle PSR. In this case

\[
\sin \theta_2 = \frac{RS}{PR}
\]

By taking the ratio of the sines of the two angles, \(\overline{PR} \) is canceled, leaving the following equation:

\[
\frac{\sin \theta_1}{\sin \theta_2} = \frac{RS}{PQ}
\]

Figure 18-2b is drawn such that the distance between P and Q is equal to the length of three wavelengths of light in medium 1, or \(PQ = 3\lambda_1 \). In a similar way, \(RS = 3\lambda_2 \). Substituting these two values into the previous equation and canceling the common factor of 3 provides an equation that relates the angles of incidence and refraction with the wavelength of the light in each medium.

\[
\frac{\sin \theta_1}{\sin \theta_2} = \frac{3\lambda_1}{3\lambda_2} = \frac{\lambda_2}{\lambda_1}
\]

Using \(\lambda = \frac{v}{f} \) in the above equation and canceling the common factor of \(f \), the equation is rewritten as follows:

\[
\frac{\sin \theta_1}{\sin \theta_2} = \frac{v_2}{v_1}
\]

Snell’s law also can be written as a ratio of the sines of the angles of incidence and refraction.

\[
\frac{\sin \theta_1}{\sin \theta_2} = \frac{n_2}{n_1}
\]

Wheelchair Refraction You can use a wheelchair to model refraction for your class. Have a student hold one wheel as stationary as possible as you move the other wheel forward. Point out the direction in which the chair turns. Repeat the demonstration with the other wheel stationary. Again note the direction in which the chair turns. Relate this to the way light changes direction as it moves into a medium that slows its speed. | Visual-Spatial

— Lois Gaston • Mandarin High School • Jacksonville, Florida
Index of Refraction Using the transitive property of equality, the previous two equations lead to the following equation:

$$\frac{n_1}{n_2} = \frac{v_2}{v_1}$$

In a vacuum, $n = 1$ and $v = c$. If either medium is a vacuum, then the equation is simplified to an equation that relates the index of refraction to the speed of light in a medium.

Index of Refraction
$n = \frac{c}{v}$

The index of refraction of a medium is equal to the speed of light in a vacuum divided by the speed of light in the medium.

This definition of the index of refraction can be used to find the wavelength of light in a medium compared to the wavelength the light would have in a vacuum. In a medium with an index of refraction n, the speed of light is given by $v = c/n$. The wavelength of the light in a vacuum is $\lambda_0 = c/f$. Solve for frequency, and substitute $f = c/v$ and $v = c/n$ into $\lambda = v/f$. $\lambda = (c/n)/(c/\lambda_0) = \lambda_0/n$, and thus the wavelength of light in a medium is smaller than the wavelength in a vacuum.

Total Internal Reflection

The angle of refraction is larger than the angle of incidence when light passes into a medium of a lower index of refraction, as shown in Figure 18-3a. This leads to an interesting phenomenon. As the angle of incidence increases, the angle of refraction increases. At a certain angle of incidence known as the critical angle θ_c, the refracted light ray lies along the boundary of the two media, as shown in Figure 18-3b.

Recall from Chapter 16 that when light strikes a transparent boundary, even though much of the light is transmitted, some is reflected. **Total internal reflection** occurs when light traveling from a region of a higher index of refraction to a region of a lower index of refraction strikes the boundary at an angle greater than the critical angle such that all light reflects back into the region of the higher index of refraction, as shown in Figure 18-3c. To construct an equation for the critical angle of any boundary, you can use Snell’s law and substitute $\theta_1 = \theta_c$ and $\theta_2 = 90.0^\circ$.

Critical Angle for Total Internal Reflection
$\sin \theta_c = \frac{n_2}{n_1}$

The sine of the critical angle is equal to the index of refraction of the refracting medium divided by the index of refraction of the incident medium.

Total internal reflection causes some curious effects. Suppose that you are looking up at the surface from underwater in a calm pool. You might see an upside-down reflection of another nearby object that also is underwater or a reflection of the bottom of the pool itself. The surface of the water acts like a mirror. Likewise, when you are standing on the side of a pool, it is possible for things below the surface of the water to not be visible to you. When a swimmer is underwater, near the surface, and on the opposite side of the pool from you, you might not see him or her. This is because the light from his or her body is reflected.

Broken Pencil

Estimated Time 5 minutes

Materials pencil; large, rectangular transparent plastic block

Procedure

1. Hold the pencil behind the plastic block. Have students look at the block and the pencil from the front so that they see the pencil both through the block and over the block.

2. Next, have students move slightly from side to side so that they view the block and pencil. Have students do this over the block.

3. Ask students to explain why the pencil appears to be broken and why the gap between the pencil seen through the block and over the block changes when it is viewed from different angles. Light from the pencil refracts both at the air/plastic interface and at the plastic/air interface.

The refraction causes the light to be shifted left or right from its original path of travel as it leaves the plastic block. If you view the pencil from different angles, you see light that is shifted different distances because it travels through different thicknesses of plastic.

Challenge Activity

Total Internal Reflection Have students prepare a demonstration for the class showing total internal reflection in a prism. Using a laser pointer, they can vary the angle of the incident light until the refracted light disappears. Encourage them to make angular measurements of the incident, refracted, and reflected light beams and to take a systematic approach. After taking a few initial measurements, they would ideally show a progression, gradually increasing from a small angle of incidence to beyond a 90° angle. They may also wish to explore 180° deviation of the beam of light. Caution students not to look into the beam at any point during the activity.

Kinesthetic
Critical Thinking

Light Pipes Have students think about the total internal reflection that they observed in the Quick Demo above. Explain that total internal reflection is impossible if the laser light is shined through a water-filled pipe instead. Ask them to explain why. The refractive index of plastic is higher than the refractive index of water. Thus, total internal reflection is impossible. L3

Optical fibers are an important technical application of total internal reflection. As shown in Figure 18-4, the light traveling through the transparent fiber always hits the internal boundary of the optical fiber at an angle greater than the critical angle, so all of the light is reflected and none of the light is transmitted through the boundary. Thus, the light maintains its intensity over the distance of the fiber.

Mirages

On a hot summer day, you sometimes can see the mirage effect shown in Figure 18-5a. As you drive down a road, you see what appears to be the reflection of an oncoming car in a pool of water. The pool, however, disappears as you approach it. The mirage is the result of the Sun heating the road. The hot road heats the air above it and produces a thermal layering of air that causes light traveling toward the road to gradually bend upward. This makes the light appear to be coming from a reflection in a pool, as shown in Figure 18-5b.

Figure 18-5c shows how this occurs. As light from a distant object travels downward toward the road, the index of refraction of the air decreases as the air gets hotter, but the temperature change is gradual. Recall from Chapter 16 that light wave fronts are comprised of Huygens’ wavelets. In the case of a mirage, the Huygens’ wavelets closer to the ground travel faster than those higher up, causing the wave fronts to gradually turn upward. A similar phenomenon, called a superior mirage, occurs when a reflection of a distant boat appears above the boat. The water keeps the air that is closer to its surface cooler.

Figure 18-4 Light impulses from a source enter one end of the optical fiber. Each time the light strikes the surface, the angle of incidence is larger than the critical angle, and, therefore, the light is kept within the fiber.

Figure 18-5 A mirage is seen on the surface of a road (a). Light from the car bends upward into the eye of the observer (b). The bottom of the wave front moves faster than the top (c).

Optical fibers are an important technical application of total internal reflection. As shown in Figure 18-4, the light traveling through the transparent fiber always hits the internal boundary of the optical fiber at an angle greater than the critical angle, so all of the light is reflected and none of the light is transmitted through the boundary. Thus, the light maintains its intensity over the distance of the fiber.
Dispersion of Light

The speed of light in a medium is determined by interactions between the light and the atoms that make up the medium. Recall from Chapters 12 and 13 that temperature and pressure are related to the energy of particles on the atomic level. The speed of light, and therefore, the index of refraction for a gaseous medium, can change slightly with temperature. In addition, the speed of light and the index of refraction vary for different wavelengths of light in the same liquid or solid medium.

You learned in Chapter 16 that white light separates into a spectrum of colors when it passes through a glass prism, as shown in Figure 18-6a. This phenomenon is called dispersion. If you look carefully at the light that passes through a prism, you will notice that violet is refracted more than red, as shown in Figure 18-6b. This occurs because the speed of violet light through glass is less than the speed of red light through glass. Violet light has a higher frequency than red light, which causes it to interact differently with the atoms of the glass. This results in glass having a slightly higher index of refraction for violet light than it has for red light.

Rainbows A prism is not the only means of dispersing light. A rainbow is a spectrum formed when sunlight is dispersed by water droplets in the atmosphere. Sunlight that falls on a water droplet is refracted. Because of dispersion, each color is refracted at a slightly different angle, as shown in Figure 18-7a. At the back surface of the droplet, some of the light undergoes internal reflection. On the way out of the droplet, the light once again is refracted and dispersed.

Although each droplet produces a complete spectrum, an observer positioned between the Sun and the rain will see only a certain wavelength of light from each droplet. The wavelength depends on the relative positions of the Sun, the droplet, and the observer, as shown in Figure 18-7b. Because there are many droplets in the sky, a complete spectrum is visible. The droplets reflecting red light make an angle of 42° in relation to the direction of the Sun’s rays; the droplets reflecting blue light make an angle of 40°.

Personal Rainbow

Purpose Students learn the conditions needed to make a rainbow.

Materials garden hose with fine spray nozzle

Procedure On a sunny afternoon, stand with the Sun at your back and spray a fine mist of water with a garden hose. Observe the rainbow you produce. Turn facing the Sun, being careful not to look directly into it, and spray the water again. Is there a rainbow?

Assessment Summarize the conditions needed to create a rainbow.

Student answers should include a source of light at your back and a means for producing water droplets in front of you to refract and reflect the light from the Sun back to your eyes.
Chapter 18 Refraction and Lenses

6. **Index of Refraction**
 You notice that when a light ray enters a certain liquid from water, it is bent toward the normal, but when it enters the same liquid from crown glass, it is bent away from the normal. What can you conclude about the liquid’s index of refraction?

7. **Index of Refraction**
 A ray of light has an angle of incidence of 30.0° on a block of unknown material and an angle of refraction of 20.0°. What is the index of refraction of the material?

8. **Speed of Light**
 Could an index of refraction ever be less than 1? What would this imply about the speed of light in that material?

9. **Speed of Light**
 What is the speed of light in chloroform (n = 1.51)?

10. **Total Internal Reflection**
 If you were to use quartz and crown glass to make an optical fiber, which would you use for the cladding layer? Why?

11. **Angle of Refraction**
 A beam of light passes from water into polyethylene with n = 1.50. If \(\sin \theta_1 = \sqrt{2} \), what is the angle of refraction of the material?

12. **Critical Angle**
 Is there a critical angle for light traveling from glass to water? From water to glass?

13. **Dispersion**
 Why can you see the image of the Sun just above the horizon when the Sun itself has already set?

14. **Critical Thinking**
 In what direction can you see a rainbow on a rainy late afternoon? Explain.

3 ASSESS

Check for Understanding

Light at a Boundary Activity

Students study reflection and refraction separately, but these phenomena usually occur together. Draw a simple sketch of a light ray incident on the boundary of a second medium. Have students complete the total diagram showing both reflection and refraction.

Visual-Spatial

Reteach

Degree of Bending

Ask students how the degree of bending of light as it enters and exits a material is related to the index of refraction of the material and the average speed of light in that material. Snell’s law describes the relationship: \(n_1 \sin \theta_1 = n_2 \sin \theta_2 \). According to the definition for index of refraction, the speed of light for the material is \(v = c/n_2 \).

18.1 Section Review

6. **Index of Refraction**
 You notice that when a light ray enters a certain liquid from water, it is bent toward the normal, but when it enters the same liquid from crown glass, it is bent away from the normal. What can you conclude about the liquid’s index of refraction?

7. **Index of Refraction**
 A ray of light has an angle of incidence of 30.0° on a block of unknown material and an angle of refraction of 20.0°. What is the index of refraction of the material?

8. **Speed of Light**
 Could an index of refraction ever be less than 1? What would this imply about the speed of light in that medium?

9. **Speed of Light**
 What is the speed of light in chloroform (n = 1.51)?

10. **Total Internal Reflection**
 If you were to use quartz and crown glass to make an optical fiber, which would you use for the cladding layer? Why?

11. **Angle of Refraction**
 A beam of light passes from water into polyethylene with n = 1.50. If \(\sin \theta_1 = \sqrt{2} \), what is the angle of refraction of the material?

12. **Critical Angle**
 Is there a critical angle for light traveling from glass to water? From water to glass?

13. **Dispersion**
 Why can you see the image of the Sun just above the horizon when the Sun itself has already set?

14. **Critical Thinking**
 In what direction can you see a rainbow on a rainy late afternoon? Explain.

Concept Development

Rainbow Lighting

Point out that the sky is brighter inside the arc of a primary rainbow. This is because many light rays from the Sun reflect at angles of less than 42°. Light of different wavelengths creates the bright area within the rainbow. Little light is reflected beyond 42°. This creates a darkened area, known as Alexander’s Dark Band, between the primary and secondary rainbows.

3 ASSESS

Check for Understanding

Light at a Boundary Activity

Students study reflection and refraction separately, but these phenomena usually occur together. Draw a simple sketch of a light ray incident on the boundary of a second medium. Have students complete the total diagram showing both reflection and refraction.

Visual-Spatial

Reteach

Degree of Bending

Ask students how the degree of bending of light as it enters and exits a material is related to the index of refraction of the material and the average speed of light in that material. Snell’s law describes the relationship: \(n_1 \sin \theta_1 = n_2 \sin \theta_2 \). According to the definition for index of refraction, the speed of light for the material is \(v = c/n_2 \).

18.1 Section Review

6. **Index of Refraction**
 You notice that when a light ray enters a certain liquid from water, it is bent toward the normal, but when it enters the same liquid from crown glass, it is bent away from the normal. What can you conclude about the liquid’s index of refraction?

7. **Index of Refraction**
 A ray of light has an angle of incidence of 30.0° on a block of unknown material and an angle of refraction of 20.0°. What is the index of refraction of the material?

8. **Speed of Light**
 Could an index of refraction ever be less than 1? What would this imply about the speed of light in that medium?

9. **Speed of Light**
 What is the speed of light in chloroform (n = 1.51)?

10. **Total Internal Reflection**
 If you were to use quartz and crown glass to make an optical fiber, which would you use for the cladding layer? Why?

11. **Angle of Refraction**
 A beam of light passes from water into polyethylene with n = 1.50. If \(\sin \theta_1 = \sqrt{2} \), what is the angle of refraction of the material?

12. **Critical Angle**
 Is there a critical angle for light traveling from glass to water? From water to glass?

13. **Dispersion**
 Why can you see the image of the Sun just above the horizon when the Sun itself has already set?

14. **Critical Thinking**
 In what direction can you see a rainbow on a rainy late afternoon? Explain.
18.2 Convex and Concave Lenses

The refraction of light in nature that forms rainbows and red lunar eclipses is beautiful, but refraction also is useful. In 1303, French physician Bernard of Gordon wrote of the use of lenses to correct eyesight. Around 1610, Galileo used two lenses to make a telescope, with which he discovered the moons of Jupiter. Since Galileo’s time, lenses have been used in many instruments, such as microscopes and cameras. Lenses are probably the most useful of all optical devices.

Types of Lenses

A lens is a piece of transparent material, such as glass or plastic, that is used to focus light and form an image. Each of a lens’s two faces might be either curved or flat. The lens in Figure 18-9a is called a convex lens because it is thicker at the center than at the edges. A convex lens often is called a converging lens because when surrounded by material with a lower index of refraction it refracts parallel light rays so that the rays meet at a point. The lens in Figure 18-9b is called a concave lens because it is thinner in the middle than at the edges. A concave lens often is called a diverging lens because when surrounded by material with a lower index of refraction rays passing through it spread out.

When light passes through a lens, refraction occurs at the two lens surfaces. Using Snell’s law and geometry, you can predict the paths of rays passing through lenses. To simplify such problems, assume that all refraction occurs on a plane, called the principal plane, that passes through the center of the lens. This approximation, called the thin lens model, applies to all the lenses that you will learn about in this chapter section.

Lens equations The problems that you will solve involve spherical thin lenses, lenses that have faces with the same curvature as a sphere. Based on the thin lens model, as well as the other simplifications used in solving problems for spherical mirrors, equations have been developed that look exactly like the equations for spherical mirrors. The thin lens equation relates the focal length of a spherical thin lens to the object position and the image position.

\[
\frac{1}{f} = \frac{1}{d_i} + \frac{1}{d_o}
\]

The inverse of the focal length of a spherical lens is equal to the sum of the inverses of the image position and the object position.

The magnification equation for spherical mirrors used in Chapter 17 also can be used for spherical thin lenses. It is used to determine the height and orientation of the image formed by a spherical thin lens.

\[
m = \frac{h_i}{h_o} = \frac{-d_i}{d_o}
\]

The magnification of an object by a spherical lens, defined as the image height divided by the object height, is equal to the negative of the image position divided by the object position.

Objectives

- Describe how real and virtual images are formed by single convex and concave lenses.
- Locate images formed by lenses using ray tracing and equations.
- Explain how chromatic aberration can be reduced.

Vocabulary

lens convex lens concave lens thin lens equation chromatic aberration achromatic lens

1 FOCUS

Bellringer Activity

Image-Producing Lenses Gather a small convex lens with a focal length between 100 and 300 mm, a 6-inch candle (with holder), small white box and a ruler. Create a double-wall cardboard holder for the lens by folding in half a piece of thin cardboard. Create tabs on one of the short sides so that the cardboard can stand upright. Cut a circle in the walls of the top part of the cardboard slightly smaller than the lens. Staple the cardboard below and on both sides of the circle and on the open end of the cardboard, but leave the top open to slip the lens inside the cardboard. Arrange the lens in between the candle and the box, so that an inverted image of the candle appears on the box. Measure the object and screen distances. Diagram and discuss image formation.

Tie to Prior Knowledge

Refraction Through Lenses Students will apply the concept of refraction to the specific case of light passing through thin, spherical convex or concave lenses. The equation that relates focal length, image distance, and object distance for mirrors looks the same as the mirror equation, though the way in which scientists derive the thin lens equation is different.

2 TEACH

Focused Image Give students an opportunity to observe the formation of a real image with a convex lens. Pass around several convex lenses. Have students use them to focus the light from an overhead light source onto a piece of white paper.

Resource MANAGER

FAST FILE Chapters 16–20 Resources

- Transparency 18-3 Master, p. 93
- Study Guide, pp. 78–79
- Reinforcement, p. 85
- Section 18-2 Quiz, p. 82
- Mini Lab Worksheet, p. 69
- Teaching Transparency 18-3

Connecting Math to Physics

Technology

- TeacherWorks™ CD-ROM
- Interactive Chalkboard CD-ROM
- ExamView® Pro Testmaker CD-ROM
- physicssp.com
- physicssp.com/vocabulary_puzzlemaker

ACTIVITY

- Visual-Spatial
- Kinesthetic
Identifying Misconceptions

Complete Images Activity
Students may believe that the size of a lens determines whether it will create a complete image of an object. They may also believe that only a partial image is formed if part of the lens is covered. Explain that a lens of any size will create a full-sized image. Students can see this by first looking through a convex lens and observing the image. Start with a single point on the object. Show rays leaving that point in all directions. Some of the rays reach the lens. They are all bent or refracted. Then have them mask part of the lens. If the mask is placed at the right location, the rays will meet at a single point. Then you can show that a larger lens will collect more light rays, a smaller lens (or a portion of the lens) fewer rays. Then draw rays from a second location on the object and repeat. Note that no matter how small the lens, both points on the object have related image points. Masking the lens only decreases the number of light rays.

Concept Development

Thin Lens Equation Help students to understand the connections among focal length, object distance, and image distance using the thin lens equation. First, choose values for \(d_o\) and \(f\), and solve the equation for \(d_i\) on the chalkboard. Have students predict how \(d_i\) would change if either \(d_o\) or \(f\) were increased or decreased. They should test their predictions by solving the equation for different values.

Using the equations for lenses It is important that you use the proper sign conventions when using these equations. Table 18-2 shows a comparison of the image position, magnification, and type of image formed by single convex and concave lenses when an object is placed at various object positions, \(d_o\), relative to the lens. Notice the similarity of this table to Table 17-1 for mirrors. As with mirrors, the distance from the principal plane of a lens to its focal point is the focal length, \(f\). The focal length depends upon the shape of the lens and the index of refraction of the lens material. Focal lengths and image positions can be negative.

For lenses, virtual images are always on the same side of the lens as the object, which means that the image position is negative. When the absolute value of a magnification is between zero and one, the image is smaller than the object. Magnifications with absolute values greater than one represent images that are larger than the objects. A negative magnification means the image is inverted compared to the object. Notice that a concave lens produces only virtual images, whereas a convex lens can produce real images or virtual images.

Convex Lenses and Real Images

As shown in Figure 18-10a, paper can be ignited by producing a real image of the Sun on the paper. Recall from Chapter 17 that the rays of the Sun are almost exactly parallel when they reach Earth. After being refracted by the lens, the rays converge at the focal point, \(F\), of the lens. Figure 18-10b shows two focal points, one on each side of the lens. You could turn the lens around, and it will work the same.

Camera Obscura The principle behind the camera obscura predates Aristotle, but the first significant improvement in the images it could produce came with the addition of a convex lens in the sixteenth century. First explain how a camera obscura works or demonstrate using a pinhole in a darkened room. Then, have students research the history of a particular scientific or artistic application and prepare a report or presentation. Students may choose to report on people who made significant use of the device, such as Johannes Kepler and Jan Vermeer, or they can focus on various designs and how they changed over time, up to and including the development of the photographic camera.
Ray diagrams In Figure 18-11, rays are traced from an object located far from a convex lens. For the purpose of locating the image, you only need to use two rays. Ray 1 is parallel to the principal axis. It refracts and passes through F on the other side of the lens. Ray 2 passes through F on its way to the lens. After refraction, its path is parallel to the principal axis. The two rays intersect at a point beyond F and locate the image. Rays selected from other points on the object converge at corresponding points to form the complete image. Note that this is a real image that is inverted and smaller compared to the object.

You can use Figure 18-11 to locate the image of an object that is closer to the lens than the object in the figure. If a refracted ray is reversed in direction, it will follow its original path in the reverse direction. This means that the image and object may be interchanged by changing the direction of the rays. Imagine that the path of light through the lens in Figure 18-11 is reversed and the object is at a distance of 15 cm from the right side of the lens. The new image, located 30 cm from the left side of the lens, is a real image that is inverted and larger compared to the object.

If the object is placed at twice the focal length from the lens at the point 2F, as shown in Figure 18-12, the image also is found at 2F. Because of symmetry, the image and object have the same size. Thus, you can conclude that if an object is more than twice the focal length from the lens, the image is smaller than the object. If the object is between F and 2F, then the image is larger than the object.

Figure 18-12 When an object is placed at a distance equal to twice the focal length from the lens, the image is the same size as the object.

Critical Thinking
Changing Object Position Have students describe how the image changes if an object, which is originally far from a convex lens, is moved slowly closer toward the lens. When the object is far from the convex lens, its image is inverted and reduced in size. When the object reaches a position equal to twice the focal length, the image is the same size as the object. The image size increases as the object moves toward the focal point. Just at the focal point, no image is produced. As the object moves from the focal point closer to the lens, the virtual image is upright and increases in size. Students can draw ray diagrams to help them visualize these relationships.

Lens Masking Effects
What happens when you mask, or cover, part of a lens? Does this cause only part of a real image to be formed by the lens?

1. Stick the edge of a convex lens into a ball of clay and place the lens on a tabletop. CAUTION: Lenses have sharp edges. Handle carefully.
2. Use a small lamp on one side and a screen on the other side to get a sharp image of the lamp’s lightbulb. CAUTION: Lamps get hot and can burn skin.
3. Predict what will happen to the image if you place your hand over the top half of the lens. This is called masking.
4. Observe the effects of masking more of the lens and masking less of the lens.

Analyze and Conclude
5. How much of the lens is needed for a complete image?
6. What is the effect of masking the lens?

Lens Masking Effects
See page 69 of FAST FILE

Chapters 16–20 Resources for the accompanying Mini Lab Worksheet.

Purpose to investigate the effect of masking a lens

Materials convex lens, clay, small lamp

Expected Results Masking the lens affects only the brightness of an image, and the complete image is still formed.

Analyze and Conclude
5. Any portion of the lens will form a complete image.
6. The more the lens is masked, the dimmer the image becomes.

Corrective Lenses Students may use eyeglasses with concave lenses to correct for nearsightedness or convex lenses to correct for farsightedness. Bring in several pairs of old convex and concave eyeglasses. Allow students to compare and contrast what they see through eyeglasses with lenses that are known to be concave or convex. Have them construct a chart correlating the changes they see in a single object with the thickness and shape of each lens. Consider factors other than size, such as any qualitative changes in brightness. Visual-Spatial

Activity

Real-Life Physics
An Image Formed by a Convex Lens

An object is placed 32.0 cm from a convex lens that has a focal length of 8.0 cm.

a. Where is the image?

b. If the object is 3.0 cm high, how tall is the image?

c. What is the orientation of the image?

1. Analyze and Sketch the Problem
 • Sketch the situation, locating the object and the lens.
 • Draw the two principal rays.

 Known:
 \[d_o = 32.0 \text{ cm} \]
 \[h_o = 3.0 \text{ cm} \]
 \[f = 8.0 \text{ cm} \]

 Unknown:
 \[d_i = ? \]
 \[h_i = ? \]

2. Solve for the Unknown
 a. Use the thin lens equation to determine \(d_i \).
 \[
 \frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i} \\
 \frac{1}{8.0 \text{ cm}} = \frac{1}{32.0 \text{ cm}} + \frac{1}{d_i} \\
 \frac{1}{8.0 \text{ cm}} - \frac{1}{32.0 \text{ cm}} = \frac{1}{d_i} \\
 d_i = \frac{8.0 \text{ cm} \cdot 32.0 \text{ cm}}{8.0 \text{ cm} - 32.0 \text{ cm}} \\
 = 11 \text{ cm (11 cm away from the lens on the side opposite the object)}

 Substitute \(f = 8.0 \text{ cm} \), \(d_o = 32.0 \text{ cm} \)

 b. Use the magnification equation and solve for image height.
 \[
 m = \frac{h_i}{h_o} = \frac{d_i}{d_o} \\
 h_i = \frac{d_i}{d_o} - h_o \\
 = \frac{11 \text{ cm} \cdot 3.0 \text{ cm}}{32.0 \text{ cm}} - 3.0 \text{ cm} \\
 = -1.0 \text{ cm (1.0 cm tall)}

 Substitute \(d_i = 11 \text{ cm} \), \(h_o = 3.0 \text{ cm} \), \(d_o = 32.0 \text{ cm} \)

 c. The negative sign in part b means that the image is inverted.

3. Evaluate the Answer
 • Are the units correct? All are in centimeters.
 • Do the signs make sense? Image position is positive (real image) and image height is negative (inverted compared to the object), which make sense for a convex lens.

Discussion

Question
Why is it necessary to put slides into a slide projector upside down?

Answer
The projector uses a convex lens. The slide is positioned between one and two focal lengths from the lens. The image is inverted and magnified.

15. A 2.25-cm-tall object is 8.5 cm to the left of a convex lens of 5.5-cm focal length.
Find the image position and height.

16. An object near a convex lens produces a 1.8-cm-tall real image that is 10.4 cm from the lens and inverted. If the focal length of the lens is 6.8 cm, what are the object position and height?

17. An object is placed to the left of a convex lens with a 25-mm focal length so that its image is the same size as the object. What are the image and object positions?

18. Use a scale ray diagram to find the image position of an object that is 30 cm to the left of a convex lens with a 10-cm focal length.

19. Calculate the image position and height of a 2.0-cm-tall object located 25 cm from a convex lens with a focal length of 5.0 cm. What is the orientation of the image?

Optometrist
A student who is interested in optical physics and who also enjoys working with people may be interested in a career as an optometrist. An optometrist is a medical professional who diagnoses and treats visual disorders and diseases. Optometrists generally obtain a four-year undergraduate degree followed by graduation from a specialized school of optometry. Students who wish to become optometrists should study chemistry, physics, anatomy and molecular biology.
Convex Lenses and Virtual Images

When an object is placed at the focal point of a convex lens, the refracted rays will emerge in a parallel beam and no image will be seen. When the object is brought closer to the lens, the rays will diverge on the opposite side of the lens, and the rays will appear to an observer to come from a spot on the same side of the lens as the object. This is a virtual image that is upright and larger compared to the object.

Figure 18-13 shows how a convex lens forms a virtual image. The object is located between F and the lens. Ray 1, as usual, approaches the lens parallel to the principal axis and is refracted through the focal point, F. Ray 2 travels from the tip of the object, in the direction it would have if it had started at F on the object side of the lens. The dashed line from F to the object shows how to draw ray 2. Ray 2 leaves the lens parallel to the principal axis. Rays 1 and 2 diverge as they leave the lens. Thus, no real image is possible. Drawing sight lines for the two rays back to their apparent intersection locates the virtual image. It is on the same side of the lens as the object, and it is upright and larger compared to the object. Note that the actual image is formed by light that passes through the lens, but you can still determine the location of the image by drawing rays that do not have to pass through the lens.

Additional MINI LAB

Water Lenses

Purpose Students observe convergence and divergence of light due to the curved surface of water.

Materials large test tube, small bolt

Procedure
1. Place a bolt or another small, heavy object in a large test tube. Look down into the test tube and observe the size of the bolt.
2. Slowly pour water into the test tube until it is about three-fourths full. Notice the water’s curved surface and the apparent size of the bolt.
3. Slowly pour more water into the test tube until a curved surface extends beyond the rim of the test tube. Again, observe the apparent size of the bolt. The image of the bolt is reduced in size when the test tube is three-fourths full of water. The image is magnified when the water extends beyond the rim.

Assessment Explain why the size of the bolt’s image changed. Draw diagrams to support your answer. Diagrams should show that the water has a concave surface (meniscus) when the test tube is three-fourths full and a convex surface when the test tube is full. The concave surface, like a concave lens, reduces the image size. The convex surface magnifies the image.

Practice Problems

20. A newspaper is held 6.0 cm from a convex lens of 20.0-cm focal length. Find the image position of the newsprint image.
21. A magnifying glass has a focal length of 12.0 cm. A coin, 2.0 cm in diameter, is placed 3.4 cm from the lens. Locate the image of the coin. What is the diameter of the image?
22. A convex lens with a focal length of 22.0 cm is used to view a 15.0-cm-long pencil located 10.0 cm away. Find the height and orientation of the image.
23. A stamp collector wants to magnify a stamp by 4.0 when the stamp is 3.5 cm from the lens. What focal length is needed for the lens?
24. A magnifier with a focal length of 30 cm is used to view a 1-cm-tall object. Use ray tracing to determine the location and size of the image when the magnifier is positioned 10 cm from the object.

Visual Impaired When performing the Additional Mini Lab, some students may be unable to discern the curvature of the surface of the water. Provide them with a hands-on model by placing modeling clay in a plastic cup. Mold the surface of the clay so that it forms a concave meniscus. Have students feel the curvature, and explain that water adhering to the sides of a test tube causes this type of rounded surface. Next, add more modeling clay to the cup to form a convex surface above the rim. Again have students feel the curvature, and explain that the water’s surface tension when the cup is filled to the brim results in this type of rounded surface.
Concave Lenses

Figure 18-14 shows how such a lens forms a virtual image. Ray 1 approaches the lens parallel to the principal axis. It leaves the lens along a line that extends back through the focal point. Ray 2 approaches the lens as if it is going to pass through the focal point on the opposite side, and leaves the lens parallel to the principal axis. The sight lines of rays 1 and 2 intersect on the same side of the lens as the object. Because the rays diverge, they produce a virtual image. The image is located at the point from where the two rays apparently diverge. The image also is upright and smaller compared to the object. This is true no matter how far from the lens the object is located. The focal length of a concave lens is negative.

When solving problems for concave lenses using the thin lens equation, you should remember that the sign convention for focal length is different from that of convex lenses. If the focal point for a concave lens is 24 cm from the lens, you should use the value $f = -24$ cm in the thin lens equation. All images for a concave lens are virtual. Thus, if an image distance is given as 20 cm from the lens, then you should use $d_i = -20$ cm. The object position always will be positive.

Defects of Spherical Lenses

Throughout this section, you have studied lenses that produce perfect images at specific positions. In reality, spherical lenses, just like spherical mirrors, have intrinsic defects that cause problems with the focus and color of images. Spherical lenses exhibit an aberration associated with their spherical design, just as mirrors do. In addition, the dispersion of light through a spherical lens causes an aberration that mirrors do not exhibit.

Spherical aberration The model that you have used for drawing rays through spherical lenses suggests that all parallel rays focus at the same position. However, this is only an approximation. In reality, parallel rays that pass through the edges of a spherical lens focus at positions different from those of parallel rays that pass through the center. This inability of a spherical lens to focus all parallel rays to a single point is called spherical aberration. Making lens surfaces aspherical, such as in cameras, eliminates spherical aberration. In high-precision instruments, many lenses, often five or more, are used to form sharp, well-defined images.
Chromatic aberration Lenses have a second defect that mirrors do not have. A lens is like a prism, so different wavelengths of light are refracted at slightly different angles, as you can see in Figure 18-15a. Thus, the light that passes through a lens, especially near the edges, is slightly dispersed. An object viewed through a lens appears to be ringed with color. This effect is called chromatic aberration. The term chromatic comes from the Greek word chromo, which means “color.”

Chromatic aberration is always present when a single lens is used. However, this defect can be greatly reduced by an achromatic lens, which is a system of two or more lenses, such as a convex lens with a concave lens, that have different indices of refraction. Such a combination of lenses is shown in Figure 18-15b. Both lenses in the figure disperse light, but the dispersion caused by the convex lens is almost canceled by the dispersion caused by the concave lens. The index of refraction of the convex lens is chosen so that the combination of lenses still converges the light.

18.2 Section Review

25. **Magnification** Magnifying glasses normally are used to produce images that are larger than the related objects, but they also can produce images that are smaller than the related objects. Explain.

26. **Image Position and Height** A 3.0-cm-tall object is located 2.0 cm from a convex lens having a focal length of 6.0 cm. Draw a ray diagram to determine the location and size of the image. Use the thin lens equation and the magnification equation to verify your answer.

27. **Types of Lenses** The cross sections of four different thin lenses are shown in Figure 18-16.

 a. Which of these lenses, if any, are convex, or converging, lenses?

 b. Which of these lenses, if any, are concave, or diverging, lenses?

28. **Chromatic Aberration** All simple lenses have chromatic aberration. Explain, then, why you do not see this effect when you look through a microscope.

29. **Chromatic Aberration** You shine white light through a convex lens onto a screen and adjust the position of the screen from the lens to focus the red light. Which direction should you move the screen to focus the blue light?

30. **Critical Thinking** An air lens constructed of two watch glasses is placed in a tank of water. Copy Figure 18-17 and draw the effect of this lens on parallel light rays incident on the lens.

Extension

Lens Power Optometrists use the reciprocal of the focal length (in meters), \(P = 1/f \), to describe the power of a lens. The power is also known as the number of diopters of a lens. Have students start with the thin-lens equation and show that the image distance can be defined in terms of the lens power by the equation \(d_i = \frac{d_o}{Pd_o - 1} \). Then have students determine the number of diopters for a lens with a 2.0 m focal length and for a lens with a -0.5 m focal length. For a focal length of 2.0 m, \(P = 1/f = 0.5 \). For a focal length of -0.5 m, \(P = 1/f = -2.0 \).
18.3 Applications of Lenses

The properties that you have learned for the refraction of light through lenses are used in almost every optical instrument. In many cases, a combination of lenses and mirrors is used to produce clear images of small or faraway objects. Telescopes, binoculars, cameras, microscopes, and even your eyes contain lenses.

Lenses in Eyes

The eye is a remarkable optical device. As shown in Figure 18-18, the eye is a fluid-filled, almost spherical vessel. Light that is emitted or reflected off an object travels into the eye through the cornea. The light then passes through the lens and focuses onto the retina that is at the back of the eye. Specialized cells on the retina absorb this light and send information about the image along the optic nerve to the brain.

Focusing images Because of its name, you might assume that the lens of an eye is responsible for focusing light onto the retina. In fact, light entering the eye is primarily focused by the cornea because the air-cornea surface has the greatest difference in indices of refraction. The lens is responsible for the fine focus that allows you to clearly see both distant and nearby objects. Using a process called accommodation, muscles surrounding the lens can contract or relax, thereby changing the shape of the lens. This, in turn, changes the focal length of the eye. When the muscles are relaxed, the image of distant objects is focused on the retina. When the muscles contract, the focal length is shortened, and this allows images of closer objects to be focused on the retina.

Biology Connection

Bellringer Activity

Focusing with Eyes Have students hold a pencil about 10 cm from their eyes and focus on it. Then, have them slowly look to a point at least a meter away and focus. If they do this several times, they will notice that their eyes become very tired. Explain that muscles in their eyes help them to focus on different distances.

Tie to Prior Knowledge

Using Lenses Students have learned how light refracts when it passes through convex and concave lenses. They will learn ways in which lenses are used in daily life.

2 TEACH

Using Models

How the Human Eye Focuses Light Set up a model of the human eye using a large round flask filled with water and fluorescein dye to make a beam of light visible, a slide projector, a piece of blank paper, and eye lenses (such as normal, long, long correcting, short, and short correcting). Place the projector about two feet from the flask and turn it on. Place a normal lens just in front of the flask in the path of light. Adjust the projector so that the cone of light in the flask converges at the back of the flask. Place the piece of paper behind the flask. Using the long lens, show students that the cone of light converges behind the flask. Placing the long correcting lens in front of the long lens should show how the lens makes the cone of light re-converge at the back of the flask. Repeat the demonstration using the short and short correcting lenses. Discuss how the eye focuses light and the causes of nearsightedness and farsightedness.

18.3 Resource Manager

FAST FILE Chapters 16–20 Resources

Technology

TeacherWorks™ CD-ROM
Interactive Chalkboard CD-ROM
ExamView® Pro Testmaker CD-ROM
physicspp.com
physicspp.com/vocabulary_puzzlemaker
Nearsightedness and farsightedness The eyes of many people do not focus sharp images on the retina. Instead, images are focused either in front of the retina or behind it. External lenses, in the form of eyeglasses or contact lenses, are needed to adjust the focal length and move images to the retina. Figure 18-19a shows the condition of nearsightedness, or myopia, whereby the focal length of the eye is too short to focus light on the retina. Images are formed in front of the retina. As shown in Figure 18-19b, concave lenses correct this by diverging light, thereby increasing images’ distances from the lens, and forming images on the retina.

You also can see in Figure 18-19c that farsightedness, or hyperopia, is the condition in which the focal length of the eye is too long. Images are therefore formed past the retina. A similar result is caused by the increasing rigidity of the lenses in the eyes of people who are more than about 45 years old. Their muscles cannot shorten the focal length enough to focus images of close objects on the retina. For either defect, convex lenses produce virtual images farther from the eye than the associated objects, as shown in Figure 18-19d. The images then become the objects for the eye lens and can be focused on the retina, thereby correcting the defect.

As light enters the eye, it first encounters the air/cornea interface. Consider a ray of light that strikes the interface between the air and a person’s cornea at an angle of 30.0° to the normal. The index of refraction of the cornea is approximately 1.4.
1. Use Snell’s law to calculate the angle of refraction.
2. What would the angle of refraction be if the person was swimming underwater?
3. Is the refraction greater in air or in water? Does this mean that objects under water seem closer or more distant than they would in air?
4. If you want the angle of refraction for the light ray in water to be the same as it is for air, what should the new angle of incidence be?

Correcting Nearsightedness Physicians have several methods for correcting nearsightedness without corrective lenses. Because most cases of nearsightedness are caused by the cornea bulging out too much, these methods are designed to flatten the cornea. In radial keratotomy, a surgeon makes small slits in the cornea in a pattern like the spokes of a wheel. In another technique, the top layer of the cornea is removed, as is a thin slice below it. The top layer is then sewn back on. Finally, high-power lasers have been used to vaporize cells in the center of the cornea and to sculpt the cornea to correct its shape.

Using Figure 18-19
Point out that Figures 18-19a and 18-19b are drawn with parallel rays coming from a distant object. Figures 18-19c and 18-19d are drawn with light rays coming from a nearby object. Ask students why the illustrations are drawn this way. A nearsighted eye cannot focus on faraway objects. A farsighted eye cannot focus on nearby objects.

Explain to students that small variations in thickness near the center of contact lenses determine whether they converge or diverge light rays. Have them draw sketches of the eye with light rays passing through a contact lens. They should see that the thickness of the lens’s center determines the refraction of the light.
Identifying Misconceptions

Sharp Images from Telescopes

Students often believe that the greatest benefit from using a telescope is the magnification of an image. Explain that astronomical objects are so far away that magnification has little effect on our ability to view them. The main benefit from using a telescope is that it increases the amount of light that is collected from the distant object, which results in a brighter image. Ask students to explain why inexpensive refracting telescopes sold in department stores are not able to produce clear images of distant objects, despite having high magnifications. Students may suggest that the objective lenses are too small to collect sufficient light to produce clear images, but it is more likely that the lenses are inexpensive and have spherical aberrations.

Concept Development

Telescope Differences

Compare the optical properties of Keplerian and Galilean telescopes. In a Keplerian telescope, the object has a focus between the two lens elements, so the final image is inverted. In a Galilean telescope, the final image is not inverted because the incident rays from the top and bottom of the object being viewed do not cross at the focal point. The image therefore is upright. The Keplerian telescope has an advantage over the Galilean model because of its wider field of view. Inversion of the image can be easily corrected.

Refracting Telescopes

An astronomical refracting telescope uses lenses to magnify distant objects. Figure 18-20 shows the optical system for a Keplerian telescope. Light from stars and other astronomical objects is so far away that the rays can be considered parallel. The parallel rays of light enter the objective convex lens and are focused as a real image at the focal point of the objective lens. The image is inverted compared to the object. This image then becomes the object for the convex lens of the eyepiece. Notice that the eyepiece lens is positioned so that the focal point of the objective lens is between the eyepiece lens and its focal point. This means that a virtual image is produced that is upright and larger than the first image. However, because the first image was already inverted, the final image is still inverted. For viewing astronomical objects, an image that is inverted is acceptable.

In a telescope, the convex lens of the eyepiece is almost always an achromatic lens. Recall that an achromatic lens is a combination of lenses that function as one lens. The combination of lenses eliminates the peripheral colors, or chromatic aberration, that can form on images.

Binoculars

Binoculars, like telescopes, produce magnified images of faraway objects. Figure 18-21 shows a typical binocular design. Each side of the binoculars is like a small telescope: light enters a convex objective lens, which inverts the image. The light then travels through two prisms that use total internal reflection to invert the image again, so that the viewer sees an image that is upright compared to the object. The prisms also extend the path along which the light travels and direct it toward the eyepiece of the binoculars. Just as the separation of your two eyes gives you a sense of three dimensions and depth, the prisms allow a greater separation of the objective lenses, thereby improving the three-dimensional view of a distant object.

Early Telescopes

The telescope was invented by Hans Lippershey in 1608. In 1609, Galileo built a telescope from information he received about Lippershey’s work. Through careful modifications, Galileo was able to produce a magnification of 30x. Challenge capable students to make a model of a telescope like the one Galileo used. Provide them with a convex and a concave lens, two nesting tubes, and other materials to secure the tubes and lenses. A Galilean telescope employs a tube having a length equal to the difference between the focal lengths of the two lenses that are mounted inside. The resulting model should include the concave lens as the eyepiece and the convex lens as the objective.
A nearsighted person should use a convex lens. A farsighted person should use a concave lens.

Critical Thinking
Microscope Objectives Microscopes typically have a rotating nosepiece that holds two or more objective lenses. Ask students to explain how the magnification of the microscope would change if you changed from a lens with a 16 mm focal length to a lens with a 4 mm focal length. The object would focus at a distance four times as close. Thus, magnification would increase by a factor of 4.

3 ASSESS
Reteach
Microscope Lenses Demo Bring in a microscope and have students examine the optical system. Allow them to observe a small object using various objective lenses. Demonstrate the use of the iris and immersion oil when viewing objects with the 100x lens.

Extension
Applications of Lenses Activity Have students research other lens applications, such as digital cameras, zoom lenses, wide-angle lenses, periscopes, or overhead projectors. They should draw a diagram or write a brief description of the optical system.

Linguistic
Convex Lenses and Focal Length

The thin lens equation states that the inverse of the focal length is equal to the sum of the inverses of the image position from the lens and the object position from the lens.

QUESTION

How is the image position with a thin convex lens related to the object position and the focal length?

Objectives

- **Make and use graphs** to describe the relationship between the image position with a thin convex lens and the object position.
- **Use models** to show that no matter the image position, the focal length is a constant.

Materials

- 25-W straight-line filament bulb lamp base
- thin convex lens
- meterstick
- lens holder
- index card

Safety Precautions

- **Ensure the lamp is turned off before plugging and unplugging it from the electrical outlet.** If using a candle, remind students to be careful of the flame.

Alternative Materials

A candle may be substituted for the lamp.

Teaching Strategy

Depending on its focal length, the lens will form a real image, a virtual image, or no image. In order for steps 2 and 7 to work, the students should be given a lens with a focal length of less than 10 cm.

Procedure

1. Place a meterstick on your lab table so that it is balancing on the thin side and the metric numbers are right side up.
2. Place a convex lens in a lens holder and set it on the meterstick on or between the 10-cm and 40-cm marks on the meterstick. (Distances will vary depending on the focal length of the lens used.)
3. Turn on the lamp and set it next to the meterstick so that the center of the lightbulb is even with the 0-cm end of the meterstick.
4. Hold an index card so that the lens is between the lamp and the index card.
5. Move the index card back and forth until an upside-down image of the lightbulb is as sharp as possible.
6. Record the distance of the lightbulb from the lens (d_o) and the distance of the image from the lens (d_i).
7. Move the lens to another spot between 10 cm and 40 cm and repeat steps 5 and 6. (Distances will vary depending on the focal length of the lens used.)
8. Repeat step 7 three more times.

Sample Data

<table>
<thead>
<tr>
<th>Trial</th>
<th>d_o (cm)</th>
<th>d_i (cm)</th>
<th>1/d_o (cm⁻¹)</th>
<th>1/d_i (cm⁻¹)</th>
<th>1/d_o + 1/d_i (cm⁻¹)</th>
<th>f(cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>40.0</td>
<td>20.5</td>
<td>0.025</td>
<td>0.049</td>
<td>0.074</td>
<td>13.6</td>
</tr>
<tr>
<td>2</td>
<td>30.0</td>
<td>25.0</td>
<td>0.033</td>
<td>0.040</td>
<td>0.073</td>
<td>13.6</td>
</tr>
<tr>
<td>3</td>
<td>20.0</td>
<td>41.7</td>
<td>0.050</td>
<td>0.024</td>
<td>0.074</td>
<td>13.5</td>
</tr>
<tr>
<td>4</td>
<td>25.0</td>
<td>29.2</td>
<td>0.040</td>
<td>0.034</td>
<td>0.074</td>
<td>13.5</td>
</tr>
<tr>
<td>5</td>
<td>35.0</td>
<td>22.1</td>
<td>0.029</td>
<td>0.045</td>
<td>0.074</td>
<td>13.5</td>
</tr>
</tbody>
</table>
1. Make and Use Graphs
 Make a scatter-plot graph of the image position (vertical axis) versus the object position (horizontal axis). Use a computer or calculator to construct the graph if possible.

2. Use Numbers
 Calculate \(1/d_o\) and \(1/d_i\) and enter the values in the calculation table.

3. Use Numbers
 Calculate the sum of \(1/d_o\) and \(1/d_i\) and enter the values in the calculation table. Calculate the reciprocal of this number and enter it in the calculation table as \(f\).

Conclude and Apply
1. Interpret Data
 Looking at the graph, describe the relationship between \(d_o\) and \(d_i\).

2. Interpret Data
 Find out the actual focal length of the lens from your teacher. How accurate are your calculations of \(f\)?

3. Interpret Data
 Compare the results of your focal length calculations of the five trials. Are your results similar?

4. Lab Techniques
 Why do you suppose you were instructed not to hold your lens closer than 10 cm or farther than 40 cm?

Analyze
1. The student is to graph a scatter plot of the \(d_o\) and \(d_i\) data. Graphs will vary.
2. See Calculation Table.
3. See Calculation Table.

Conclude and Apply
1. As one gets bigger, the other gets smaller.
2. Answers will vary. Sample answer: There is about a 3% error between the calculated value and the actual value. The accuracy is fairly good.
3. Answers will vary. Sample answer: The calculations of focal length were very precise. All of the lengths were within 0.1 cm of each other.
4. If the lens is closer than the focal length, then you cannot get an image because it is virtual. Also, beyond a certain point, the image distance becomes almost constant.

Going Further
1. \(d_o\) is more precise, because the lens position is fixed on the meterstick, while \(d_i\) is subject to interpretation regarding when the image is best in focus.
2. Error in measurement comes from the limitations of the tools used and the people doing the measuring. To make \(d_i\) more accurate, students should understand the relation between proper technique and accurate results. Accuracy will always be limited by spherical aberration.

Real-World Physics
1. The lens will need to be farther from the film so that the film will be at the image position, which has moved farther from the lens.
2. The image on your retina is much smaller than the actual object, and it is upside down.

To Make this Lab an Inquiry Lab: Ask students, “Can you project an image of an object on a note card using a lens? If you want to vary the size of the image but still keep it in focus, which factors must you consider?” Have students choose their own materials and develop a procedure. If they need guidance, have them start by finding the image distance for objects that are relatively far away (out the window, for example), then finding the object distance needed to project the image on a distant wall. This gives them the extreme points of their curve. They can then measure distances in between.
Gravitational Lenses

In 1979, astronomers at the Jodrell Bank Observatory in Great Britain discovered two quasars that were separated by only 7 arc seconds (seven 0.36th’s of a degree). Measurements showed they should have been 500,000 light years apart. The two quasars seemed to fluctuate in brightness and in rhythm with each other. The most amazing thing, however, was that the quasars had identical spectra. There appeared to be two different objects, but the two objects were the same.

Activity

Model a Gravitational Lens Place an object on the opposite side of a barrier from an observation point. Have students use prisms and lenses to try to see two different images of the object around both sides of the barrier from the same observation point.

Going Further

1. **Infer** Why was the discovery of gravitational lenses important?

2. **Compare and Contrast** How are gravitational lenses similar to convex lenses? How are they different?
18.1 Refraction of Light

Vocabulary
- index of refraction (p. 486)
- Snell's law of refraction (p. 486)
- critical angle (p. 489)
- total internal reflection (p. 489)
- dispersion (p. 491)

Key Concepts
- The path of travel of light bends when it passes from a medium with an index of refraction, \(n_1 \), into a medium with a different index of refraction, \(n_2 \).
 \[
 n_1 \sin \theta_1 = n_2 \sin \theta_2
 \]
- The ratio of the speed of light in a vacuum, \(c \), to the speed of light in any medium, \(v \), is the index of refraction, \(n \), of the medium.
 \[
 n = \frac{c}{v}
 \]
- When light traveling through a medium hits a boundary of a medium with a smaller index of refraction, if the angle of incidence exceeds the critical angle, \(\theta_c \), the light will be reflected back into the original medium by total internal reflection.
 \[
 \sin \theta_c = \frac{n_2}{n_1}
 \]

18.2 Convex and Concave Lenses

Vocabulary
- lens (p. 493)
- convex lens (p. 493)
- concave lens (p. 493)
- thin lens equation (p. 493)
- chromatic aberration (p. 499)
- achromatic lens (p. 499)

Key Concepts
- The focal length, \(f \), the object position, \(d_o \), and the image position, \(d_i \), for a lens are related by the thin lens equation.
 \[
 \frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i}
 \]
- The magnification, \(m \), of an image by a lens is defined in the same way as the magnification of an image by a mirror.
 \[
 m = \frac{h_i}{h_o} = -\frac{d_i}{d_o}
 \]
- A single convex lens produces a real image that is inverted when the object position is greater than the focal length. The image is reduced or enlarged, depending on the object position.
- A single convex lens produces a virtual image that is upright and larger than the object when the object is located between the lens and the focal point.
- A single concave lens always produces a virtual image that is upright and smaller than the object.
- All simple lenses have chromatic aberration. All lenses made with spherical surfaces have spherical aberration.

18.3 Applications of Lenses

Vocabulary
- nearsightedness (p. 501)
- farsightedness (p. 501)

Key Concepts
- Differences in indices of refraction between air and the cornea are primarily responsible for focusing light in the eye.
- Optical instruments use combinations of lenses to obtain clear images of small or distant objects.
Concept Mapping

Mastering Concepts

38. The angle of incidence is larger than the angle of refraction because air has a smaller index of refraction.

39. The angle of incidence is smaller than the angle of refraction because glass has a larger index of refraction.

40. The term critical angle refers to the incident angle that causes the refracted ray to lie right along the boundary of the substance when a ray is passing from a region of higher index of refraction to a region of lower index of refraction. If the incident angle exceeds the critical angle, total internal reflection will occur.

41. The speeds of the different colors of light traveling through air are the same.

42. During a lunar eclipse, Earth blocks the Sun’s rays from the moon. However, sunlight refracting off Earth’s atmosphere is directed inward toward the Moon. Because blue wavelengths of light are dispersed more, red wavelengths of light reflect off the Moon toward Earth.

43. Convex lenses are thicker at the center than at the edges. Concave lenses are thinner in the middle than at the edges.

44. It is a real image that is located between F and 2F, and that is inverted and smaller compared to the object.

45. The index of refraction of the material from which the lens is made also determines the focus.

46. Another lens is included in the optics system of the projector to invert the image again. As a result, the image is upright compared to the original object.

47. All lenses have chromatic aberration, which means different wavelengths of light are bent at slightly different angles near their edges. An achromatic lens is a combination of two or more lenses with different indices of refraction that reduce this effect.

48. Light entering the eye is primarily focused by the cornea. Fine focusing occurs when muscles change the shape of the lens, allowing the eye to focus on either near or far objects.

49. nearsightedness

50. real image, inverted

51. It improves the three-dimensional view.

Applying Concepts

53. Which substance, A or B, in Figure 18-24 has a larger index of refraction? Explain.
60. A prism bends violet light more than it bends red light. Explain.
61. Rainbows Why would you never see a rainbow in the southern sky if you were in the northern hemisphere? In which direction should you look to see rainbows if you are in the southern hemisphere?
62. Suppose that Figure 18-14 is redrawn with a lens of the same focal length but a larger diameter. Explain why the location of the image does not change. Would the image be affected in any way?
63. A swimmer uses a magnifying glass to observe a small object on the bottom of a swimming pool. She discovers that the magnifying glass does not magnify the object very well. Explain why the magnifying glass is not functioning as it would in air.
64. Why is there chromatic aberration for light that goes through a lens but not for light that reflects from a mirror?
65. When subjected to bright sunlight, the pupils of your eyes are smaller than when they are subjected to dimmer light. Explain why your eyes can focus better in bright light.
66. Binoculars The objective lenses in binoculars form real images that are upright compared to their objects. Where are the images located relative to the eyepiece lenses?

Mastering Problems

18.1 Refraction of Light

67. A ray of light travels from air into a liquid, as shown in Figure 18-25. The ray is incident upon the liquid at an angle of 30.0°. The angle of refraction is 22.0°.
 a. Using Snell’s law, calculate the index of refraction of the liquid.
 b. Compare the calculated index of refraction to those in Table 18-1. What might the liquid be?

68. Light travels from flint glass into ethanol. The angle of refraction in the ethanol is 25.0°. What is the angle of incidence in the glass?
69. A beam of light strikes the flat, glass side of a water-filled aquarium at an angle of 40.0° to the normal. For glass, \(n = 1.50 \).
 a. At what angle does the beam enter the glass?
 b. At what angle does the beam enter the water?
70. Refer to Table 18-1. Use the index of refraction of diamond to calculate the speed of light in diamond.
71. Refer to Table 18-1. Find the critical angle for a diamond in air.
72. Aquarium Tank A thick sheet of plastic, \(n = 1.500 \), is used as the side of an aquarium tank. Light reflected from a fish in the water has an angle of incidence of 35.0°. At what angle does the light enter the air?

73. Swimming-Pool Lights A light source is located 2.0 m below the surface of a swimming pool and 1.5 m from one edge of the pool, as shown in Figure 18-26. The pool is filled to the top with water.
 a. At what angle does the light reaching the edge of the pool leave the water?
 b. Does this cause the light viewed from this angle to appear deeper or shallower than it actually is?

74. A diamond’s index of refraction for red light, 656 nm, is 2.410, while that for blue light, 434 nm, is 2.450. Suppose that white light is incident on the diamond at 30.0°. Find the angles of refraction for red and blue light.
75. The index of refraction of crown glass is 1.53 for violet light, and it is 1.51 for red light.
 a. What is the speed of violet light in crown glass?
 b. What is the speed of red light in crown glass?

76. A light source is located 2.0 m below the surface of a swimming pool and 1.5 m from one edge of the pool, as shown in Figure 18-26. The pool is filled to the top with water.
 a. At what angle does the light reaching the edge of the pool leave the water?
 b. Does this cause the light viewed from this angle to appear deeper or shallower than it actually is?

77. Use Figure 18-26 (Not to scale) to calculate the angle of refraction for a light ray that travels from air into a liquid at an angle of 30.0°.

78. The index of refraction of diamond for red light, 656 nm, is 2.410, while that for blue light, 434 nm, is 2.450. Suppose that white light is incident on the diamond at 30.0°. Find the angles of refraction for red and blue light.

79. The index of refraction of crown glass is 1.53 for violet light, and it is 1.51 for red light.
 a. What is the speed of violet light in crown glass?
 b. What is the speed of red light in crown glass?

52. The reflex mirror diverts the image onto a prism so that it can be viewed before taking a photograph. When the shutter release button is pressed, the reflex mirror moves out of the way so that the lens focuses the image onto the film or other photodetector.

Applying Concepts

53. The angle in substance A is smaller, so it has the larger index of refraction.
54. An angle of incidence of 0° allows the light to go through unchanged.
55. As the index of refraction of a material increases, the speed of light in that material decreases.
56. The critical angle decreases as the index of refraction increases.
57. Air and glass have the smaller critical angle of 41.1°. The critical angle for air and water is 48.8°.
58. This illustrates light reflected at angles larger than the critical angle, or total internal reflection.
59. Even though Greenland is below the horizon, it is visible as a mirage due to the refraction of light. See Solutions Manual.
60. Violet light travels slower in a prism than red light does.
61. You can see a rainbow only when the Sun’s rays come from behind you at an angle not greater than 42° with the horizon. When you are facing south in the northern hemisphere, the Sun is never behind you at an angle of 42° or less. In the southern hemisphere, you would never see a rainbow in the northern sky. You could see a rainbow if the Sun is behind you at the correct angle.
62. The location of the image depends on the focal length of the lens and the distance of the object from the lens. Therefore, the location of the image doesn’t change.
63. The magnification is much less in water than in air. The difference in the indices of refraction for water and glass is much less than the difference for air and glass.
64. Chromatic aberration for lenses is due to the dispersion of light (different wavelengths of light have different speeds in the lens and refract with slightly different angles). Mirrors reflect, and reflection is independent of wavelength.
65. Eyes can focus better in bright light because rays that are refracted into larger angles are cut off by the iris. Therefore, all rays converge at a narrow angle, so there is less spherical aberration.
66. Each side of the binoculars is like a refracting telescope. The objective lens image must, therefore, be between the eye-piece lens and its focal point to magnify the image.

Mastering Problems

18.1 Refraction of Light

Level 1
67. a. 1.33
 b. water

68. 20.8°
69. a. 25.4°
 b. 28.9°

70. 1.24×10^8 m/s
71. 24.4°

Level 2
72. 49.7°
73. a. 53°
 b. 1.1 m, shallower
74. for red light: 12.0°; for blue light: 11.8°
75. a. 1.96×10^8 m/s
 b. 1.99×10^8 m/s
76. 60.8°

Level 3
77. The value $\sin \theta_2$ is 1.09 is not defined; therefore, total internal reflection occurs.
78. a. 28°
 b. $P = 62°, Q = 58°, R = 32°$
 c. 59°
79. 13.7°

18.2 Convex and Concave Lenses

Level 1
 $d_i = 34$ cm
82. The image is 39.3 cm from the lens.
83. 10.0 cm

84. 14 cm
 b. -1.8 cm, the image is inverted.
86. The image is 1.5 cm tall.

Level 3
87. a. 6.00 cm
 b. $d_{i,\text{new}} = 60.0$ cm, $h_{i,\text{new}} = -12$ cm, inverted orientation

88. a. position: 75 cm, size: 3.0 cm
 b. position: 15 cm, size: 6.0 cm, and orientation: upright; this is a virtual image that is upright compared to the object.

18.3 Applications of Lenses

Level 1
89. a. 51 mm
 b. 1.01×10^3 mm
The refracted rays appear to be air, then \(n_1 = 1.00 \). Let \(n_2 = n_1 \). Therefore, \(n_1 \sin \theta_1 = n_2 \sin \theta_2 \). State any assumptions and restrictions.

99. **Astronomy** How many more minutes would it take light from the Sun to reach Earth if the space between them were filled with water rather than a vacuum? The Sun is 1.5\(\times 10^8 \) km from Earth.

100. **Apparent Depth** Sunlight reflects diffusively off the bottom of an aquarium. Figure 18-29 shows two of the many light rays that would reflect diffusively from a point off the bottom of the tank and travel to the surface. The light rays refract into the air as shown. The red dashed line extending back from the refracted light ray is a sight line that intersects with the vertical ray at the location where an observer would see the image of the bottom of the tank.

a. Compute the direction that the refracted ray will travel above the surface of the water.

b. At what depth does the bottom of the tank appear to be if you look into the water? Divide this apparent depth into the true depth and compare it to the index of refraction.

\[
\text{Figure 18-29}
\]

102. **Apparent Depth** Sunlight reflects diffusively off the bottom of an aquarium. Figure 18-29 shows two of the many light rays that would reflect diffusively from a point off the bottom of the tank and travel to the surface. The light rays refract into the air as shown. The red dashed line extending back from the refracted light ray is a sight line that intersects with the vertical ray at the location where an observer would see the image of the bottom of the tank.

a. Compute the direction that the refracted ray will travel above the surface of the water.

b. At what depth does the bottom of the tank appear to be if you look into the water? Divide this apparent depth into the true depth and compare it to the index of refraction.

\[
\text{Figure 18-29}
\]
Chapter 18 Assessment

Thinking Critically

104. for red light: 24.173°; for blue light: 23.543°; difference = 0.630°

105. 49.8°. In comparison, the critical angle for glass, \(n = 1.54 \), is 40.5°. The larger critical angle means that fewer rays would be totally internally reflected in an ice core than in a glass core. Thus, they would not be able to transmit as much light. Fiber optic cables made of glass would work better.

106. position: −10 cm; the image orientation is not changed.

107. The light that passes through a lens near the edges of the lens is slightly dispersed, since the edges of a lens resemble a prism and refract different wavelengths of light at slightly different angles. The result is that white light is dispersed into its spectrum. The effect is called chromatic aberration.

108. It will get dimmer because fewer light rays will converge, but you will see a complete image.

Writing in Physics

109. Answers will vary.

110. Answers will vary.

Cumulative Review

111. 180 times

112. 420°C

113. The pitch of the horn that is heard by the pedestrian will decrease as the car slows down.

114. a. \(1 \times 10^{-6} \) the value it was originally
 b. \(1 \times 10^{-6} \) the value it was originally
 c. They both follow the inverse square law of distance.

 b. distance: −10.5 cm, height: 5.25 cm

103. Bank Teller Window A 25-mm-thick sheet of plastic, \(n = 1.5 \), is used in a bank teller’s window. A ray of light strikes the sheet at an angle of 45°. The ray leaves the sheet at 45°, but at a different location. Use a ray diagram to find the distance between the ray that leaves and the one that would have left if the plastic were not there.

104. Recognize Spatial Relationships White light traveling through air (\(n = 1.0003 \)) enters a slab of glass, incident at exactly 45°. For dense flint glass, \(n = 1.7708 \) for blue light (\(A = 435.8 \text{ nm} \)) and \(n = 1.7273 \) for red light (\(A = 643.8 \text{ nm} \)). What is the angular dispersion of the red and blue light?

105. Compare and Contrast Find the critical angle for ice (\(n = 1.31 \)). In a very cold world, would fiber-optic cables made of ice or those made of glass do a better job of keeping light inside the cable? Explain.

106. Recognize Cause and Effect Your lab partner used a convex lens to produce an image with \(d = 25 \text{ cm} \) and \(h = 4.0 \text{ cm} \). You are examining a concave lens with a focal length of −15 cm. You place the concave lens between the convex lens and the original image, 10 cm from the image. To your surprise, you see a real image on the wall that is larger than the object. You are told that the image from the convex lens is now the object for the concave lens, and because it is on the opposite side of the concave lens, it is a virtual object. Use these hints to find the new image position and image height, and to predict whether the concave lens changed the orientation of the original image.

107. Define Operationally Name and describe the effect that causes the rainbow-colored fringe commonly seen at the edges of a spot of white light from a slide or overhead projector.

108. Think Critically A lens is used to project the image of an object onto a screen. Suppose that you cover the right half of the lens. What will happen to the image?

Writing in Physics

109. The process of accommodation, whereby muscles surrounding the lens in the eye contract or relax to enable the eye to focus on close or distant objects, varies for different species. Investigate this effect for different animals. Prepare a report for the class showing how this fine focusing is accomplished for different eye mechanisms.

110. Investigate the lens system used in an optical instrument such as an overhead projector or a particular camera or telescope. Prepare a graphic display for the class explaining how the instrument forms images.

Cumulative Review

111. If you drop a 2.0 kg bag of lead shot from a height of 1.5 m, you could assume that half of the potential energy will be converted into thermal energy in the lead. The other half would go to thermal energy in the floor. How many times would you have to drop the bag to heat it by 10°C? (Chapter 12)

112. A blacksmith puts an iron hoop or tire on the outer rim of a wooden carriage wheel by heating the hoop so that it expands to a diameter greater than the wooden wheel. When the hoop cools, it contracts to hold the rim in place. If a blacksmith has a wooden wheel with a 1.0000-m diameter and wants to put a rim with a 0.9950-m diameter on the wheel, what is the minimum temperature change the iron must experience? (\(\alpha_{\text{iron}} = 12 \times 10^{-6}/\text{°C} \) (Chapter 13)

113. A car sounds its horn as it approaches a pedestrian in a crosswalk. What does the pedestrian hear as the car brakes to allow him to cross the street? (Chapter 15)

114. Suppose that you could stand on the surface of the Sun and weigh yourself. Also suppose that you could measure the illuminance on your hand from the Sun’s visible spectrum produced at that position. Next, imagine yourself traveling to a position 1000 times farther away from the center of the Sun as you were when standing on its surface. (Chapter 16)
 a. How would the force of gravity on you from the Sun at the new position compare to what it was at the surface?
 b. How would the illuminance on your hand from the Sun at the new position compare to what it was when you were standing on its surface? (For simplicity, assume that the Sun is a point source at both positions.)
 c. Compare the effect of distance upon the gravitational force and illuminance.

115. Beautician’s Mirror The nose of a customer who is trying some face powder is 3.00-cm high and is located 6.00 cm in front of a concave mirror having a 14.0-cm focal length. Find the image position and height of the customer’s nose by means of the following. (Chapter 17)
 a. a ray diagram drawn to scale
 b. the mirror and magnification equations

For more problems, go to Additional Problems, Appendix B.
Multiple Choice
1. A flashlight beam is directed at a swimming pool in the dark at an angle of 46° with respect to the normal to the surface of the water. What is the angle of refraction of the beam in the water? (The refractive index for water is 1.33.)
 - 18°
 - 30°
 - 33°
 - 44°

2. The speed of light in diamond is 1.24×10^8 m/s. What is the index of refraction of diamond?
 - 0.0422
 - 1.24
 - 0.413
 - 2.42

3. Which one of the items below is not involved in the formation of rainbows?
 - diffraction
 - reflection
 - dispersion
 - refraction

4. George’s picture is being taken by Cami, as shown in the figure, using a camera which has a convex lens with a focal length of 0.0470 m. Determine George’s image position.
 - 1.86 cm
 - 4.82 cm
 - 4.70 cm
 - 20.7 cm

5. What is the magnification of an object that is 4.15 m in front of a camera that has an image position of 5.0 cm?
 - 0.83
 - 0.012
 - 0.83
 - 1.2

6. Which one of the items below is not involved in the formation of mirages?
 - heating of air near the ground
 - Huygens’ wavelets
 - reflection
 - refraction

7. What is the image position for the situation shown in the figure?
 - -6.00 m
 - 0.167 m
 - -1.20 m
 - 0.833 m

8. What is the critical angle for total internal reflection when light travels from glass ($n = 1.52$) to water ($n = 1.33$)?
 - 29.0°
 - 48.8°
 - 41.2°
 - 61.0°

9. What happens to the image formed by a convex lens when half of the lens is covered?
 - half of the image disappears
 - the image dims
 - the image gets blurry
 - the image inverts

Extended Answer
10. The critical angle for total internal reflection at a diamond-air boundary is 24.4°. What is the angle of refraction in the air if light is incident on the boundary at an angle of 20.0°?

11. An object that is 6.98 cm from a lens produces an image that is 2.95 cm from the lens on the same side of the lens. Determine the type of lens that is producing the image and explain how you know.

Use as Much Time as You Can
You will not get extra points for finishing a test early. Work slowly and carefully to prevent careless errors that can occur when you are hurrying to finish.

Multiple Choice
1. C
2. D
3. A
4. C
5. B
6. C
7. B
8. D
9. B

Extended Answer
10. 55.9°
11. $m = -\frac{-2.95 \text{ cm}}{6.98 \text{ cm}} = 0.423$;
 A negative image position with an image height that is reduced relative to the object means that the lens is concave.