Introduction to Applications of Nuclear Physics

Applications of nuclear physics have become an integral part of modern life. From the bone scan that detects a cancer to the radioiodine treatment that cures another, nuclear radiation has diagnostic and therapeutic effects on medicine. From the fission power reactor to the hope of controlled fusion, nuclear energy is now commonplace and is a part of our plans for the future. Yet, the destructive potential of nuclear weapons haunts us, as does the possibility of nuclear reactor accidents. Certainly, several applications of nuclear physics escape our view, as seen in Figure 32.2. Not only has nuclear physics revealed secrets of nature, it has an inevitable impact based on its applications, as they are intertwined with human values. Because of its potential for alleviation of suffering, and its power as an ultimate destructor of life, nuclear physics is often viewed with ambivalence. But it provides perhaps the best example that applications can be good or evil, while knowledge itself is neither.
32.1 Medical Imaging and Diagnostics

A host of medical imaging techniques employ nuclear radiation. What makes nuclear radiation so useful? First, γ radiation can easily penetrate tissue; hence, it is a useful probe to monitor conditions inside the body. Second, nuclear radiation depends on the nuclide and not on the chemical compound it is in, so that a radioactive nuclide can be put into a compound designed for specific purposes. The compound is said to be **tagged**. A tagged compound used for medical purposes is called a **radiopharmaceutical**. Radiation detectors external to the body can determine the location and concentration of a radiopharmaceutical to yield medically useful information. For example, certain drugs are concentrated in inflamed regions of the body, and this information can aid diagnosis and treatment as seen in Figure 32.4. Another application utilizes a radiopharmaceutical which the body sends to bone cells, particularly those that are most active, to detect cancerous tumors or healing points. Images can then be produced of such bone scans. Radioisotopes are also used to determine the functioning of body organs, such as blood flow, heart muscle activity, and iodine uptake in the thyroid gland.

![Figure 32.4](http://cnx.org/content/col11406/1.7)

A radiopharmaceutical is used to produce this brain image of a patient with Alzheimer’s disease. Certain features are computer enhanced. (credit: National Institutes of Health)

Medical Application

Medical Application

Table 32.1 lists certain medical diagnostic uses of radiopharmaceuticals, including isotopes and activities that are typically administered. Many organs can be imaged with a variety of nuclear isotopes replacing a stable element by a radioactive isotope. One common diagnostic employs iodine to image the thyroid, since iodine is concentrated in that organ. The most active thyroid cells, including cancerous cells, concentrate the most iodine and, therefore, emit the most radiation. Conversely, hypothyroidism is indicated by lack of iodine uptake. Note that there is more than one isotope that can be used for several types of scans. Another common nuclear diagnostic is the thallium scan for the cardiovascular system, particularly used to evaluate blockages in the coronary arteries and examine heart activity. The salt TlCl can be used, because it acts like NaCl and follows the blood. Gallium-67 accumulates where there is rapid cell growth, such as in tumors and sites of infection. Hence, it is useful in cancer imaging. Usually, the patient receives the injection one day and has a whole body scan 3 or 4 days later because it can take several days for the gallium to build up.
Table 32.1 Diagnostic Uses of Radiopharmaceuticals

<table>
<thead>
<tr>
<th>Procedure, isotope</th>
<th>Typical activity (mCi), where 1 mCi = 3.7×10^7 Bq</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brain scan</td>
<td></td>
</tr>
<tr>
<td>99m-Tc</td>
<td>7.5</td>
</tr>
<tr>
<td>113m-In</td>
<td>7.5</td>
</tr>
<tr>
<td>11C (PET)</td>
<td>20</td>
</tr>
<tr>
<td>13N (PET)</td>
<td>20</td>
</tr>
<tr>
<td>15O (PET)</td>
<td>50</td>
</tr>
<tr>
<td>18F (PET)</td>
<td>10</td>
</tr>
<tr>
<td>Lung scan</td>
<td></td>
</tr>
<tr>
<td>99m-Tc</td>
<td>2</td>
</tr>
<tr>
<td>133Xe</td>
<td>7.5</td>
</tr>
<tr>
<td>Cardiovascular blood pool</td>
<td></td>
</tr>
<tr>
<td>131I</td>
<td>0.2</td>
</tr>
<tr>
<td>99m-Tc</td>
<td>2</td>
</tr>
<tr>
<td>Cardiovascular arterial flow</td>
<td></td>
</tr>
<tr>
<td>201Tl</td>
<td>3</td>
</tr>
<tr>
<td>24Na</td>
<td>7.5</td>
</tr>
<tr>
<td>Thyroid scan</td>
<td></td>
</tr>
<tr>
<td>131I</td>
<td>0.05</td>
</tr>
<tr>
<td>123I</td>
<td>0.07</td>
</tr>
<tr>
<td>Liver scan</td>
<td></td>
</tr>
<tr>
<td>198Au (colloid)</td>
<td>0.1</td>
</tr>
<tr>
<td>99m-Tc (colloid)</td>
<td>2</td>
</tr>
<tr>
<td>Bone scan</td>
<td></td>
</tr>
<tr>
<td>85Sr</td>
<td>0.1</td>
</tr>
<tr>
<td>99m-Tc</td>
<td>10</td>
</tr>
<tr>
<td>Kidney scan</td>
<td></td>
</tr>
<tr>
<td>197Hg</td>
<td>0.1</td>
</tr>
<tr>
<td>99m-Tc</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Note that Table 32.1 lists many diagnostic uses for 99m-Tc, where “m” stands for a metastable state of the technetium nucleus. Perhaps 80 percent of all radiopharmaceutical procedures employ 99m-Tc because of its many advantages. One is that the decay of its metastable state produces a single, easily identified 0.142-MeV γ ray. Additionally, the radiation dose to the patient is limited by the short 6.0-h half-life of 99m-Tc. And, although its half-life is short, it is easily and continuously produced on site. The basic process for production is neutron activation of molybdenum, which quickly β decays into 99m-Tc. Technetium-99m can be attached to many compounds to allow the imaging of the skeleton, heart, lungs, kidneys, etc.
Figure 32.5 shows one of the simpler methods of imaging the concentration of nuclear activity, employing a device called an Anger camera or gamma camera. A piece of lead with holes bored through it collimates γ rays emerging from the patient, allowing detectors to receive γ rays from specific directions only. The computer analysis of detector signals produces an image. One of the disadvantages of this detection method is that there is no depth information (i.e., it provides a two-dimensional view of the tumor as opposed to a three-dimensional view), because radiation from any location under that detector produces a signal.

Figure 32.5 An Anger or gamma camera consists of a lead collimator and an array of detectors. Gamma rays produce light flashes in the scintillators. The light output is converted to an electrical signal by the photomultipliers. A computer constructs an image from the detector output.

Imaging techniques much like those in x-ray computed tomography (CT) scans use nuclear activity in patients to form three-dimensional images. Figure 32.6 shows a patient in a circular array of detectors that may be stationary or rotated, with detector output used by a computer to construct a detailed image. This technique is called single-photon-emission computed tomography (SPECT) or sometimes simply SPET. The spatial resolution of this technique is poor, about 1 cm, but the contrast (i.e., the difference in visual properties that makes an object distinguishable from other objects and the background) is good.

Figure 32.6 SPECT uses a geometry similar to a CT scanner to form an image of the concentration of a radiopharmaceutical compound. (credit: Woldo, Wikimedia Commons)

Images produced by β^+ emitters have become important in recent years. When the emitted positron (β^+) encounters an electron, mutual annihilation occurs, producing two γ rays. These γ rays have identical 0.511-MeV energies (the energy comes from the destruction of an electron or positron mass) and they move directly away from one another, allowing detectors to determine their point of origin accurately, as shown in Figure 32.7. The system is called positron emission tomography (PET). It requires detectors on opposite sides to simultaneously (i.e., at the same time) detect photons of 0.511-MeV energy and utilizes computer imaging techniques similar to those in SPECT and CT scans. Examples of β^+-emitting isotopes used in PET are 11C, 13N, 15O, and 18F, as seen in Table 32.1. This list includes C, N, and O, and so they have the advantage of being able to function as tags for natural body compounds. Its resolution of 0.5 cm is better than that of SPECT; the accuracy and sensitivity of PET scans make them useful for examining the brain’s anatomy and function. The brain’s use of oxygen and water can be monitored with 15O. PET is used extensively for diagnosing brain disorders. It can note decreased metabolism in certain regions prior to a confirmation of Alzheimer’s disease. PET can locate regions in the brain that become active when a person carries out specific activities, such as speaking, closing their eyes, and so on.
32.2 Biological Effects of Ionizing Radiation

We hear many seemingly contradictory things about the biological effects of ionizing radiation. It can cause cancer, burns, and hair loss, yet it is used to treat and even cure cancer. How do we understand these effects? Once again, there is an underlying simplicity in nature, even in complicated biological organisms. All the effects of ionizing radiation on biological tissue can be understood by knowing that ionizing radiation affects molecules within cells, particularly DNA molecules.

Let us take a brief look at molecules within cells and how cells operate. Cells have long, double-helical DNA molecules containing chemical codes called genetic codes that govern the function and processes undertaken by the cell. It is for unraveling the double-helical structure of DNA that James Watson, Francis Crick, and Maurice Wilkins received the Nobel Prize. Damage to DNA consists of breaks in chemical bonds or other changes in the structural features of the DNA chain, leading to changes in the genetic code. In human cells, we can have as many as a million individual instances of damage to DNA per cell per day. It is remarkable that DNA contains codes that check whether the DNA is damaged or can repair itself. It is like an auto check and repair mechanism. This repair ability of DNA is vital for maintaining the integrity of the genetic code and for the normal functioning of the entire organism. It should be constantly active and needs to respond rapidly. The rate of DNA repair depends on various factors such as the cell type and age of the cell. A cell with a damaged ability to repair DNA, which could have been induced by ionizing radiation, can do one of the following:

- The cell can go into an irreversible state of dormancy, known as senescence.
- The cell can commit suicide, known as programmed cell death.
- The cell can go into unregulated cell division leading to tumors and cancers.

Since ionizing radiation damages the DNA, which is critical in cell reproduction, it has its greatest effect on cells that rapidly reproduce, including most types of cancer. Thus, cancer cells are more sensitive to radiation than normal cells and can be killed by it easily. Cancer is characterized by a malfunction of cell reproduction, and can also be caused by ionizing radiation. Without contradiction, ionizing radiation can be both a cure and a cause.

To discuss quantitatively the biological effects of ionizing radiation, we need a radiation dose unit that is directly related to those effects. All effects of radiation are assumed to be directly proportional to the amount of ionization produced in the biological organism. The amount of ionization is in turn proportional to the amount of deposited energy. Therefore, we define a radiation dose unit called the rad, as \(1/100 \) of a joule of ionizing energy deposited per kilogram of tissue, which is

\[
1 \text{ rad} = 0.01 \text{ J/kg}. \tag{32.1}
\]

For example, if a 50.0-kg person is exposed to ionizing radiation over her entire body and she absorbs 1.00 J, then her whole-body radiation dose is

\[
(1.00 \text{ J}) / (50.0 \text{ kg}) = 0.0200 \text{ J/kg} = 2.00 \text{ rad}. \tag{32.2}
\]

If the same 1.00 J of ionizing energy were absorbed in her 2.00-kg forearm alone, then the dose to the forearm would be
\[(1.00 \text{ J}) / (2.00 \text{ kg}) = 0.500 \text{ J/kg} = 50.0 \text{ rad},\]
\[(32.3)\]

and the unaffected tissue would have a zero rad dose. While calculating radiation doses, you divide the energy absorbed by the mass of affected tissue. You must specify the affected region, such as the whole body or forearm in addition to giving the numerical dose in rads. The SI unit for radiation dose is the gray (Gy), which is defined to be

\[1 \text{ Gy} = 1 \text{ J/kg} = 100 \text{ rad}.\]
\[(32.4)\]

However, the rad is still commonly used. Although the energy per kilogram in 1 rad is small, it has significant effects since the energy causes ionization. The energy needed for a single ionization is a few eV, or less than \(10^{-18}\) J. Thus, 0.01 J of ionizing energy can create a huge number of ion pairs and have an effect at the cellular level.

The effects of ionizing radiation may be directly proportional to the dose in rads, but they also depend on the type of radiation and the type of tissue. That is, for a given dose in rads, the effects depend on whether the radiation is \(\alpha\), \(\beta\), \(\gamma\), x-ray, or some other type of ionizing radiation. In the earlier discussion of the range of ionizing radiation, it was noted that energy is deposited in a series of ionizations and not in a single interaction. Each ion pair or ionization requires a certain amount of energy, so that the number of ion pairs is directly proportional to the amount of the deposited ionizing energy. But, if the range of the radiation is small, as it is for \(\alpha\)s, then the ionization and the damage created is more concentrated and harder for the organism to repair, as seen in Figure 32.9. Concentrated damage is more difficult for biological organisms to repair than damage that is spread out, so short-range particles have greater biological effects. The relative biological effectiveness (RBE) or quality factor (QF) is given in Table 32.2 for several types of ionizing radiation—the effect of the radiation is directly proportional to the RBE. A dose unit more closely related to effects in biological tissue is called the roentgen equivalent man or rem and is defined to be the dose in rads multiplied by the relative biological effectiveness.

\[\text{rem} = \text{rad} \times \text{RBE}\]
\[(32.5)\]

Figure 32.9 The image shows ionization created in cells by \(\alpha\) and \(\gamma\) radiation. Because of its shorter range, the ionization and damage created by \(\alpha\) is more concentrated and harder for the organism to repair. Thus, the RBE for \(\alpha\)s is greater than the RBE for \(\gamma\) s, even though they create the same amount of ionization at the same energy.

So, if a person had a whole-body dose of 2.00 rad of \(\gamma\) radiation, the dose in rem would be \((2.00 \text{ rad})(1) = 2.00 \text{ rem} \text{ whole body}\). If the person had a whole-body dose of 2.00 rad of \(\alpha\) radiation, then the dose in rem would be \((2.00 \text{ rad})(20) = 40.0 \text{ rem} \text{ whole body}\). The \(\alpha\)s would have 20 times the effect on the person than the \(\gamma\)s for the same deposited energy. The SI equivalent of the rem is the sievert (Sv), defined to be

\[\text{Sv} = \text{Gy} \times \text{RBE},\]
\[(32.6)\]

The RBEs given in Table 32.2 are approximate, but they yield certain insights. For example, the eyes are more sensitive to radiation, because the cells of the lens do not repair themselves. Neutrons cause more damage than \(\gamma\) rays, although both are neutral and have large ranges, because neutrons often cause secondary radiation when they are captured. Note that the RBEs are 1 for higher-energy \(\beta\) s, \(\gamma\) s, and x-rays, three of the most common types of radiation. For those types of radiation, the numerical values of the dose in rem and rad are identical. For example, 1 rad of \(\gamma\) radiation is also 1 rem. For that reason, rads are still widely quoted rather than rem. Table 32.3 summarizes the units that are used for radiation.

Misconception Alert: Activity vs. Dose

“Activity” refers to the radioactive source while “dose” refers to the amount of energy from the radiation that is deposited in a person or object.

A high level of activity doesn’t mean much if a person is far away from the source. The activity \(R\) of a source depends upon the quantity of material (kg) as well as the half-life. A short half-life will produce many more disintegrations per second. Recall that \(R = \frac{0.693N}{t_{1/2}}\). Also, the activity decreases exponentially, which is seen in the equation \(R = R_0e^{-\lambda t}\).
The large-scale effects of radiation on humans can be divided into two categories: immediate effects and long-term effects. Table 32.4 gives the immediate effects of whole-body exposures received in less than one day. If the radiation exposure is spread out over more time, greater doses are needed to cause the effects listed. This is due to the body's ability to partially repair the damage. Any dose less than 100 mSv (10 rem) is called a low dose, 0.1 Sv to 1 Sv (10 to 100 rem) is called a moderate dose, and anything greater than 1 Sv (100 rem) is called a high dose. There is no known way to determine after the fact if a person has been exposed to less than 10 mSv.

<table>
<thead>
<tr>
<th>Dose in Sv [2]</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>0–0.10</td>
<td>No observable effect.</td>
</tr>
<tr>
<td>0.1 – 1</td>
<td>Slight to moderate decrease in white blood cell counts.</td>
</tr>
<tr>
<td>0.5</td>
<td>Temporary sterility; 0.35 for women, 0.50 for men.</td>
</tr>
<tr>
<td>1 – 2</td>
<td>Significant reduction in blood cell counts, brief nausea and vomiting. Rarely fatal.</td>
</tr>
<tr>
<td>2 – 5</td>
<td>Nausea, vomiting, hair loss, severe blood damage, hemorrhage, fatalities.</td>
</tr>
<tr>
<td>4.5</td>
<td>LD50/32. Lethal to 50% of the population within 32 days after exposure if not treated.</td>
</tr>
<tr>
<td>5 – 20</td>
<td>Worst effects due to malfunction of small intestine and blood systems. Limited survival.</td>
</tr>
<tr>
<td>>20</td>
<td>Fatal within hours due to collapse of central nervous system.</td>
</tr>
</tbody>
</table>

Immediate effects are explained by the effects of radiation on cells and the sensitivity of rapidly reproducing cells to radiation. The first clue that a person has been exposed to radiation is a change in blood count, which is not surprising since blood cells are the most rapidly reproducing cells in the body. At higher doses, nausea and hair loss are observed, which may be due to interference with cell reproduction. Cells in the lining of the digestive system also rapidly reproduce, and their destruction causes nausea. When the growth of hair cells slows, the hair follicles become thin and break off. High doses cause significant cell death in all systems, but the lowest doses that cause fatalities do so by weakening the immune system through the loss of white blood cells.

The two known long-term effects of radiation are cancer and genetic defects. Both are directly attributable to the interference of radiation with cell reproduction. For high doses of radiation, the risk of cancer is reasonably well known from studies of exposed groups. Hiroshima and Nagasaki survivors and a smaller number of people exposed by their occupation, such as radium dial painters, have been fully documented. Chernobyl victims will be studied for many decades, with some data already available. For example, a significant increase in childhood thyroid cancer has been observed. The risk of a radiation-induced cancer for low and moderate doses is generally assumed to be proportional to the risk known for high doses. Under this assumption, any dose of radiation, no matter how small, involves a risk to human health. This is called the linear hypothesis and it may be prudent, but it is controversial. There is some evidence that, unlike the immediate effects of radiation, the long-term effects are cumulative and there is little self-repair. This is analogous to the risk of skin cancer from UV exposure, which is known to be cumulative.

There is a latency period for the onset of radiation-induced cancer of about 2 years for leukemia and 15 years for most other forms. The person is at risk for at least 30 years after the latency period. Omitting many details, the overall risk of a radiation-induced cancer death per year per rem of exposure is about 10 in a million, which can be written as \(\frac{10}{10^6} \text{ rem} \cdot \text{y} \).
If a person receives a dose of 1 rem, his risk each year of dying from radiation-induced cancer is 10 in a million and that risk continues for about 30 years. The lifetime risk is thus 300 in a million, or 0.03 percent. Since about 20 percent of all worldwide deaths are from cancer, the increase due to a 1 rem exposure is impossible to detect demographically. But 100 rem (1 Sv), which was the dose received by the average Hiroshima and Nagasaki survivor, causes a 3 percent risk, which can be observed in the presence of a 20 percent normal or natural incidence rate.

The incidence of genetic defects induced by radiation is about one-third that of cancer deaths, but is much more poorly known. The lifetime risk of a genetic defect due to a 1 rem exposure is about 100 in a million or 3.3 \times 10^{-6} \text{ rem} \cdot \text{y}, but the normal incidence is 60,000 in a million. Evidence of such a small increase, tragic as it is, is nearly impossible to obtain. For example, there is no evidence of increased genetic defects among the offspring of Hiroshima and Nagasaki survivors. Animal studies do not seem to correlate well with effects on humans and are not very helpful. For both cancer and genetic defects, the approach to safety has been to use the linear hypothesis, which is likely to be an overestimate of the risks of low doses. Certain researchers even claim that low doses are beneficial. Hormesis is a term used to describe generally favorable biological responses to low exposures of toxins or radiation. Such low levels may help certain repair mechanisms to develop or enable cells to adapt to the effects of the low exposures. Positive effects may occur at low doses that could be a problem at high doses.

Even the linear hypothesis estimates of the risks are relatively small, and the average person is not exposed to large amounts of radiation. Table 32.5 lists average annual background radiation doses from natural and artificial sources for Australia, the United States, Germany, and world-wide averages. Cosmic rays are partially shielded by the atmosphere, and the dose depends upon altitude and latitude, but the average is about 0.40 mSv/y. A good example of the variation of cosmic radiation dose with altitude comes from the airline industry. Monitored personnel show an average of 2 mSv/y. A 12-hour flight might give you an exposure of 0.02 to 0.03 mSv.

Doses from the Earth itself are mainly due to the isotopes of uranium, thorium, and potassium, and vary greatly by location. Some places have great natural concentrations of uranium and thorium, yielding doses ten times as high as the average value. Internal doses come from foods and liquids that we ingest. Fertilizers containing phosphates have potassium and uranium. So we are all a little radioactive. Carbon-14 has about 66 Bq/kg radioactivity whereas fertilizers may have more than 3000 Bq/kg radioactivity. Medical and dental diagnostic exposures are mostly from x-rays. It should be noted that x-ray doses tend to be localized and are becoming much smaller with improved techniques. Table 32.6 shows typical doses received during various diagnostic x-ray examinations. Note the large dose from a CT scan. While CT scans only account for less than 20 percent of the x-ray procedures done today, they account for about 50 percent of the annual dose received.

Radon is usually more pronounced underground and in buildings with low air exchange with the outside world. Almost all soil contains some ^{226}Ra and ^{222}Rn, but radon is lower in mainly sedimentary soils and higher in granite soils. Thus, the exposure to the public can vary greatly, even within short distances. Radon can diffuse from the soil into homes, especially basements. The estimated exposure for ^{222}Rn is controversial. Recent studies indicate there is more radon in homes than had been realized, and it is speculated that radon may be responsible for 20 percent of lung cancers, being particularly hazardous to those who also smoke. Many countries have introduced limits on allowable radon concentrations in indoor air, often requiring the measurement of radon concentrations in a house prior to its sale. Ironically, it could be argued that the higher levels of radon exposure and their geographic variability, taken with the lack of demographic evidence of any effects, means that low-level radiation is less dangerous than previously thought.

Radiation Protection

Laws regulate radiation doses to which people can be exposed. The greatest occupational whole-body dose that is allowed depends upon the country and is about 20 to 50 mSv/y and is rarely reached by medical and nuclear power workers. Higher doses are allowed for the hands. Much lower doses are permitted for the reproductive organs and the fetuses of pregnant women. Inadvertent doses to the public are limited to 1/10 of occupational doses, except for those caused by nuclear power, which cannot legally expose the public to more than 1/1000 of the occupational limit or 0.05 mSv/y (5 mrem/y). This has been exceeded in the United States only at the time of the Three Mile Island (TMI) accident in 1979. Chernobyl is another story. Extensive monitoring with a variety of radiation detectors is performed to assure radiation safety. Increased ventilation in uranium mines has lowered the dose there to about 1 mSv/y.

Table 32.5 Background Radiation Sources and Average Doses

<table>
<thead>
<tr>
<th>Source</th>
<th>Dose (mSv/y)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Australia</td>
</tr>
<tr>
<td>Natural Radiation - external</td>
<td></td>
</tr>
<tr>
<td>Cosmic Rays</td>
<td>0.30</td>
</tr>
<tr>
<td>Soil, building materials</td>
<td>0.40</td>
</tr>
<tr>
<td>Radon gas</td>
<td>0.90</td>
</tr>
<tr>
<td>Natural Radiation - internal</td>
<td></td>
</tr>
<tr>
<td>^{40}K, ^{14}C, ^{226}Ra</td>
<td>0.24</td>
</tr>
<tr>
<td>Medical & Dental</td>
<td>0.80</td>
</tr>
<tr>
<td>TOTAL</td>
<td>2.6</td>
</tr>
</tbody>
</table>

To physically limit radiation doses, we use **shielding**, increase the **distance** from a source, and limit the **time of exposure**.

Figure 32.10 illustrates how these are used to protect both the patient and the dental technician when an x-ray is taken. Shielding absorbs radiation and can be provided by any material, including sufficient air. The greater the distance from the source, the more the radiation spreads out. The less
time a person is exposed to a given source, the smaller is the dose received by the person. Doses from most medical diagnostics have decreased in recent years due to faster films that require less exposure time.

Figure 32.10 A lead apron is placed over the dental patient and shielding surrounds the x-ray tube to limit exposure to tissue other than the tissue that is being imaged. Fast films limit the time needed to obtain images, reducing exposure to the imaged tissue. The technician stands a few meters away behind a lead-lined door with a lead glass window, reducing her occupational exposure.

Table 32.6 Typical Doses Received During Diagnostic X-ray Exams

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Effective dose (mSv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chest</td>
<td>0.02</td>
</tr>
<tr>
<td>Dental</td>
<td>0.01</td>
</tr>
<tr>
<td>Skull</td>
<td>0.07</td>
</tr>
<tr>
<td>Leg</td>
<td>0.02</td>
</tr>
<tr>
<td>Mammogram</td>
<td>0.40</td>
</tr>
<tr>
<td>Barium enema</td>
<td>7.0</td>
</tr>
<tr>
<td>Upper GI</td>
<td>3.0</td>
</tr>
<tr>
<td>CT head</td>
<td>2.0</td>
</tr>
<tr>
<td>CT abdomen</td>
<td>10.0</td>
</tr>
</tbody>
</table>

Problem-Solving Strategy

You need to follow certain steps for dose calculations, which are

Step 1. Examine the situation to determine that a person is exposed to ionizing radiation.

Step 2. Identify exactly what needs to be determined in the problem (identify the unknowns). The most straightforward problems ask for a dose calculation.

Step 3. Make a list of what is given or can be inferred from the problem as stated (identify the knowns). Look for information on the type of radiation, the energy per event, the activity, and the mass of tissue affected.

Step 4. For dose calculations, you need to determine the energy deposited. This may take one or more steps, depending on the given information.

Step 5. Divide the deposited energy by the mass of the affected tissue. Use units of joules for energy and kilograms for mass. If a dose in Sv is involved, use the definition that $1 \text{ Sv} = 1 \text{ J/kg}$.

Step 6. If a dose in mSv is involved, determine the RBE (QF) of the radiation. Recall that $1 \text{ mSv} = 1 \text{ mGy} \times \text{RBE}$ (or $1 \text{ rem} = 1 \text{ rad} \times \text{RBE}$).

Step 7. Check the answer to see if it is reasonable: Does it make sense? The dose should be consistent with the numbers given in the text for diagnostic, occupational, and therapeutic exposures.

Example 32.1 Dose from Inhaled Plutonium

Calculate the dose in rem/y for the lungs of a weapons plant employee who inhales and retains an activity of $1.00 \mu\text{Ci}$ of ^{239}Pu in an accident. The mass of affected lung tissue is 2.00 kg, the plutonium decays by emission of a $5.23\text{-MeV} \alpha$ particle, and you may assume the higher value of the RBE for α s from Table 32.2.

Strategy

Dose in rem is defined by $1 \text{ rad} = 0.01 \text{ J/kg}$ and $1 \text{ rem} = 1 \text{ rad} \times \text{RBE}$. The energy deposited is divided by the mass of tissue affected and then multiplied by the RBE. The latter two quantities are given, and so the main task in this example will be to find the energy deposited in one year.
Since the activity of the source is given, we can calculate the number of decays, multiply by the energy per decay, and convert MeV to joules to get the total energy.

Solution

The activity \(R = 1.00 \text{ µCi} = 3.70 \times 10^4 \text{ Bq} = 3.70 \times 10^4 \text{ decays/s} \). So, the number of decays per year is obtained by multiplying by the number of seconds in a year:

\[
(3.70 \times 10^4 \text{ decays/s}) (3.16 \times 10^7 \text{ s}) = 1.17 \times 10^{12} \text{ decays.}
\]

(32.7)

Thus, the ionizing energy deposited per year is

\[
E = (1.17 \times 10^{12} \text{ decays}) (5.23 \text{ MeV/decay}) (\frac{1.60 \times 10^{-13} \text{ J}}{\text{MeV}}) = 0.978 \text{ J}.
\]

(32.8)

Dividing by the mass of the affected tissue gives

\[
\frac{E}{\text{mass}} = \frac{0.978 \text{ J}}{2.00 \text{ kg}} = 0.489 \text{ J/kg}.
\]

(32.9)

One Gray is 1.00 J/kg, and so the dose in Gy is

\[
dose \text{ in Gy} = \frac{0.489 \text{ J/kg}}{1.00 (\text{J/kg})/\text{Gy}} = 0.489 \text{ Gy}.
\]

(32.10)

Now, the dose in Sv is

\[
dose \text{ in Sv} = \text{Gy} \times \text{RBE} = (0.489 \text{ Gy})(20) = 9.8 \text{ Sv}.
\]

(32.11)

(32.12)

Discussion

First note that the dose is given to two digits, because the RBE is (at best) known only to two digits. By any standard, this yearly radiation dose is high and will have a devastating effect on the health of the worker. Worse yet, plutonium has a long radioactive half-life and is not readily eliminated by the body, and so it will remain in the lungs. Being an \(\alpha \) emitter makes the effects 10 to 20 times worse than the same ionization produced by \(\beta \) s, \(\gamma \) rays, or \(x \)-rays. An activity of 1.00 \(\mu \text{Ci} \) is created by only 16 \(\mu \text{g} \) of \(^{239} \text{Pu} \) (left as an end-of-chapter problem to verify), partly justifying claims that plutonium is the most toxic substance known. Its actual hazard depends on how likely it is to be spread out among a large population and then ingested. The Chernobyl disaster’s deadly legacy, for example, has nothing to do with the plutonium it put into the environment.

Risk versus Benefit

Medical doses of radiation are also limited. Diagnostic doses are generally low and have further lowered with improved techniques and faster films. With the possible exception of routine dental x-rays, radiation is used diagnostically only when needed so that the low risk is justified by the benefit of the diagnosis. Chest x-rays give the lowest doses—about 0.1 mSv to the tissue affected, with less than 5 percent scattering into tissues that are not directly imaged. Other x-ray procedures range upward to about 10 mSv in a CT scan, and about 5 mSv (0.5 rem) per dental x-ray, again both only affecting the tissue imaged. Medical images with radiopharmaceuticals give doses ranging from 1 to 5 mSv, usually localized. One exception is the thyroid scan using \(^{131} \text{I} \). Because of its relatively long half-life, it exposes the thyroid to about 0.75 Sv. The isotope \(^{123} \text{I} \) is more difficult to produce, but its short half-life limits thyroid exposure to about 15 mSv.

PhET Explorations: Alpha Decay

Watch alpha particles escape from a polonium nucleus, causing radioactive alpha decay. See how random decay times relate to the half life.

PhET Interactive Simulation

Figure 32.11 Alpha Decay (http://cnx.org/content/m42652/1.4/alpha-decay_en.jar)

32.3 Therapeutic Uses of Ionizing Radiation

Therapeutic applications of ionizing radiation, called radiation therapy or radiotherapy, have existed since the discovery of x-rays and nuclear radioactivity. Today, radiotherapy is used almost exclusively for cancer therapy, where it saves thousands of lives and improves the quality of life and longevity of many it cannot save. Radiotherapy may be used alone or in combination with surgery and chemotherapy (drug treatment) depending on the type of cancer and the response of the patient. A careful examination of all available data has established that radiotherapy’s beneficial effects far outweigh its long-term risks.
Medical Application

The earliest uses of ionizing radiation on humans were mostly harmful, with many at the level of snake oil as seen in Figure 32.12. Radium-doped cosmetics that glowed in the dark were used around the time of World War I. As recently as the 1950s, radon mine tours were promoted as healthful and rejuvenating—those who toured were exposed but gained no benefits. Radium salts were sold as health elixirs for many years. The gruesome death of a wealthy industrialist, who became psychologically addicted to the brew, alerted the unsuspecting to the dangers of radium salt elixirs. Most abuses finally ended after the legislation in the 1950s.

Figure 32.12 The properties of radiation were once touted for far more than its modern use in cancer therapy. Until 1932, radium was advertised for a variety of uses, often with tragic results. (credit: Struthious Bandersnatch.)

Radiotherapy is effective against cancer because cancer cells reproduce rapidly and, consequently, are more sensitive to radiation. The central problem in radiotherapy is to make the dose for cancer cells as high as possible while limiting the dose for normal cells. The ratio of abnormal cells killed to normal cells killed is called the therapeutic ratio, and all radiotherapy techniques are designed to enhance this ratio. Radiation can be concentrated in cancerous tissue by a number of techniques. One of the most prevalent techniques for well-defined tumors is a geometric technique shown in Figure 32.13. A narrow beam of radiation is passed through the patient from a variety of directions with a common crossing point in the tumor. This concentrates the dose in the tumor while spreading it out over a large volume of normal tissue. The external radiation can be x-rays, ^{60}Co γ rays, or ionizing-particle beams produced by accelerators. Accelerator-produced beams of neutrons, π-mesons, and heavy ions such as nitrogen nuclei have been employed, and these can be quite effective. These particles have larger QFs or RBEs and sometimes can be better localized, producing a greater therapeutic ratio. But accelerator radiotherapy is much more expensive and less frequently employed than other forms.

Figure 32.13 The ^{60}Co source of γ-radiation is rotated around the patient so that the common crossing point is in the tumor, concentrating the dose there. This geometric technique works for well-defined tumors.
Another form of radiotherapy uses chemically inert radioactive implants. One use is for prostate cancer. Radioactive seeds (about 40 to 100 and the size of a grain of rice) are placed in the prostate region. The isotopes used are usually 135I (6-month half life) or 103Pd (3-month half life). Alpha emitters have the dual advantages of a large QF and a small range for better localization.

Radiopharmaceuticals are used for cancer therapy when they can be localized well enough to produce a favorable therapeutic ratio. Thyroid cancer is commonly treated utilizing radioactive iodine. Thyroid cells concentrate iodine, and cancerous thyroid cells are more aggressive in doing this. An ingenious use of radiopharmaceuticals in cancer therapy tags antibodies with radioisotopes. Antibodies produced by a patient to combat his cancer are extracted, cultured, loaded with a radioisotope, and then returned to the patient. The antibodies are concentrated almost entirely in the tissue they developed to fight, thus localizing the radiation in abnormal tissue. The therapeutic ratio can be quite high for short-range radiation. There is, however, a significant dose for organs that eliminate radiopharmaceuticals from the body, such as the liver, kidneys, and bladder. As with most radiotherapy, the technique is limited by the tolerable amount of damage to the normal tissue.

Table 32.7 lists typical therapeutic doses of radiation used against certain cancers. The doses are large, but not fatal because they are localized and spread out in time. Protocols for treatment vary with the type of cancer and the condition and response of the patient. Three to five 200-rem treatments per week for a period of several weeks is typical. Time between treatments allows the body to repair normal tissue. This effect occurs because damage is concentrated in the abnormal tissue, and the abnormal tissue is more sensitive to radiation. Damage to normal tissue limits the doses. You will note that the greatest doses are given to any tissue that is not rapidly reproducing, such as in the adult brain. Lung cancer, on the other end of the scale, cannot ordinarily be cured with radiation because of the sensitivity of lung tissue and blood to radiation. But radiotherapy for lung cancer does alleviate symptoms and prolong life and is therefore justified in some cases.

<table>
<thead>
<tr>
<th>Type of Cancer</th>
<th>Typical dose (Sv)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lung</td>
<td>10–20</td>
</tr>
<tr>
<td>Hodgkin’s disease</td>
<td>40–45</td>
</tr>
<tr>
<td>Skin</td>
<td>40–50</td>
</tr>
<tr>
<td>Ovarian</td>
<td>50–75</td>
</tr>
<tr>
<td>Breast</td>
<td>50–80+</td>
</tr>
<tr>
<td>Brain</td>
<td>80+</td>
</tr>
<tr>
<td>Neck</td>
<td>80+</td>
</tr>
<tr>
<td>Bone</td>
<td>80+</td>
</tr>
<tr>
<td>Soft tissue</td>
<td>80+</td>
</tr>
<tr>
<td>Thyroid</td>
<td>80+</td>
</tr>
</tbody>
</table>

Finally, it is interesting to note that chemotherapy employs drugs that interfere with cell division and is, thus, also effective against cancer. It also has almost the same side effects, such as nausea and hair loss, and risks, such as the inducement of another cancer.

32.4 Food Irradiation

Ionizing radiation is widely used to sterilize medical supplies, such as bandages, and consumer products, such as tampons. Worldwide, it is also used to irradiate food, an application that promises to grow in the future. **Food irradiation** is the treatment of food with ionizing radiation. It is used to reduce pest infestation and to delay spoilage and prevent illness caused by microorganisms. Food irradiation is controversial. Proponents see it as superior to pasteurization, preservatives, and insecticides, supplanting dangerous chemicals with a more effective process. Opponents see its safety as unproved, perhaps leaving worse toxic residues as well as presenting an environmental hazard at treatment sites. In developing countries, food irradiation might increase crop production by 25.0% or more, and reduce food spoilage by a similar amount. It is used chiefly to treat spices and some fruits, and in some countries, red meat, poultry, and vegetables. Over 40 countries have approved food irradiation at some level.

Food irradiation exposes food to large doses of γ rays, x-rays, or electrons. These photons and electrons induce no nuclear reactions and thus create no residual radioactivity. (Some forms of ionizing radiation, such as neutron irradiation, cause residual radioactivity. These are not used for food irradiation.) The γ source is usually 60Co or 137Cs, the latter isotope being a major by-product of nuclear power. Cobalt-60 γ rays average 1.25 MeV, while those of 137Cs are 0.67 MeV and are less penetrating. X-rays used for food irradiation are created with voltages of up to 5 million volts and, thus, have photon energies up to 5 MeV. Electrons used for food irradiation are accelerated to energies up to 10 MeV. The higher the energy per particle, the more penetrating the radiation is and the more ionization it can create. **Figure 32.14** shows a typical γ-irradiation plant.
Figure 32.14 A food irradiation plant has a conveyor system to pass items through an intense radiation field behind thick shielding walls. The γ source is lowered into a deep pool of water for safe storage when not in use. Exposure times of up to an hour expose food to doses up to 10^4 Gy.

Owing to the fact that food irradiation seeks to destroy organisms such as insects and bacteria, much larger doses than those fatal to humans must be applied. Generally, the simpler the organism, the more radiation it can tolerate. (Cancer cells are a partial exception, because they are rapidly reproducing and, thus, more sensitive.) Current licensing allows up to 1000 Gy to be applied to fresh fruits and vegetables, called a low dose in food irradiation. Such a dose is enough to prevent or reduce the growth of many microorganisms, but about 10,000 Gy is needed to kill salmonella, and even more is needed to kill fungi. Doses greater than 10,000 Gy are considered to be high doses in food irradiation and product sterilization.

The effectiveness of food irradiation varies with the type of food. Spices and many fruits and vegetables have dramatically longer shelf lives. These also show no degradation in taste and no loss of food value or vitamins. If not for the mandatory labeling, such foods subjected to low-level irradiation (up to 1000 Gy) could not be distinguished from untreated foods in quality. However, some foods actually spoil faster after irradiation, particularly those with high water content like lettuce and peaches. Others, such as milk, are given a noticeably unpleasant taste. High-level irradiation produces significant and chemically measurable changes in foods. It produces about a 15% loss of nutrients and a 25% loss of vitamins, as well as some change in taste. Such losses are similar to those that occur in ordinary freezing and cooking.

How does food irradiation work? Ionization produces a random assortment of broken molecules and ions, some with unstable oxygen- or hydrogen-containing molecules known as free radicals. These undergo rapid chemical reactions, producing perhaps four or five thousand different compounds called radiolytic products, some of which make cell function impossible by breaking cell membranes, fracturing DNA, and so on. How safe is the food afterward? Critics argue that the radiolytic products present a lasting hazard, perhaps being carcinogenic. However, the safety of irradiated food is not known precisely. We do know that low-level food irradiation produces no compounds in amounts that can be measured chemically. This is not surprising, since trace amounts of several thousand compounds may be created. We also know that there have been no observable negative short-term effects on consumers. Long-term effects may show up if large number of people consume large quantities of irradiated food, but no effects have appeared due to the small amounts of irradiated food that are consumed regularly. The case for safety is supported by testing of animal diets that were irradiated; no transmitted genetic effects have been observed. Food irradiation (at least up to a million rad) has been endorsed by the World Health Organization and the UN Food and Agricultural Organization. Finally, the hazard to consumers, if it exists, must be weighed against the benefits in food production and preservation. It must also be weighed against the very real hazards of existing insecticides and food preservatives.

32.5 Fusion

While basking in the warmth of the summer sun, a student reads of the latest breakthrough in achieving sustained thermonuclear power and vaguely recalls hearing about the cold fusion controversy. The three are connected. The Sun’s energy is produced by nuclear fusion (see Figure 32.15). Thermonuclear power is the name given to the use of controlled nuclear fusion as an energy source. While research in the area of thermonuclear power is progressing, high temperatures and containment difficulties remain. The cold fusion controversy centered around unsubstantiated claims of practical fusion power at room temperatures.

Figure 32.15 The Sun’s energy is produced by nuclear fusion. (credit: Spiralz)

Nuclear fusion is a reaction in which two nuclei are combined, or fused, to form a larger nucleus. We know that all nuclei have less mass than the sum of the masses of the protons and neutrons that form them. The missing mass times c^2 equals the binding energy of the nucleus—the greater the binding energy, the greater the missing mass. We also know that $\frac{BE}{A}$, the binding energy per nucleon, is greater for medium-mass nuclei and has a maximum at Fe (iron). This means that if two low-mass nuclei can be fused together to form a larger nucleus, energy can be released. The
larger nucleus has a greater binding energy and less mass per nucleon than the two that combined. Thus mass is destroyed in the fusion reaction, and energy is released (see Figure 32.16). On average, fusion of low-mass nuclei releases energy, but the details depend on the actual nuclides involved.

Figure 32.16 Fusion of light nuclei to form medium-mass nuclei destroys mass, because $\frac{BE}{A}$ is greater for the product nuclei. The larger $\frac{BE}{A}$ is, the less mass per nucleon, and so mass is converted to energy and released in these fusion reactions.

The major obstruction to fusion is the Coulomb repulsion between nuclei. Since the attractive nuclear force that can fuse nuclei together is short ranged, the repulsion of like positive charges must be overcome to get nuclei close enough to induce fusion. Figure 32.17 shows an approximate graph of the potential energy between two nuclei as a function of the distance between their centers. The graph is analogous to a hill with a well in its center. A ball rolled from the right must have enough kinetic energy to get over the hump before it falls into the deeper well with a net gain in energy. So it is with fusion. If the nuclei are given enough kinetic energy to overcome the electric potential energy due to repulsion, then they can combine, release energy, and fall into a deep well. One way to accomplish this is to heat fusion fuel to high temperatures so that the kinetic energy of thermal motion is sufficient to get the nuclei together.

Figure 32.17 Potential energy between two light nuclei graphed as a function of distance between them. If the nuclei have enough kinetic energy to get over the Coulomb repulsion hump, they combine, release energy, and drop into a deep attractive well. Tunneling through the barrier is important in practice. The greater the kinetic energy and the higher the particles get up the barrier (or the lower the barrier), the more likely the tunneling.

You might think that, in the core of our Sun, nuclei are coming into contact and fusing. However, in fact, temperatures on the order of 10^8 K are needed to actually get the nuclei in contact, exceeding the core temperature of the Sun. Quantum mechanical tunneling is what makes fusion in the Sun possible, and tunneling is an important process in most other practical applications of fusion, too. Since the probability of tunneling is extremely sensitive to barrier height and width, increasing the temperature greatly increases the rate of fusion. The closer reactants get to one another, the more likely they are to fuse (see Figure 32.18). Thus most fusion in the Sun and other stars takes place at their centers, where temperatures are highest. Moreover, high temperature is needed for thermonuclear power to be a practical source of energy.
The Sun produces energy by fusing protons or hydrogen nuclei ^1H (by far the Sun’s most abundant nuclide) into helium nuclei ^4He. The principal sequence of fusion reactions forms what is called the proton-proton cycle:

\begin{align}
^1\text{H} + ^1\text{H} & \rightarrow ^2\text{H} + e^+ + \nu_e & (0.42 \text{ MeV}) \\
^1\text{H} + ^2\text{H} & \rightarrow ^3\text{He} + \gamma & (5.49 \text{ MeV}) \\
^3\text{He} + ^3\text{He} & \rightarrow ^4\text{He} + ^1\text{H} + ^1\text{H} & (12.86 \text{ MeV})
\end{align}

where e^+ stands for a positron and ν_e is an electron neutrino. (The energy in parentheses is released by the reaction.) Note that the first two reactions must occur twice for the third to be possible, so that the cycle consumes six protons (^1H) but gives back two. Furthermore, the two positrons produced will find two electrons and annihilate to form four more γ rays, for a total of six. The overall effect of the cycle is thus

\begin{equation}
2e^- + 4^1\text{H} \rightarrow ^4\text{He} + 2\nu_e + 6\gamma \quad (26.7 \text{ MeV})
\end{equation}

where the 26.7 MeV includes the annihilation energy of the positrons and electrons and is distributed among all the reaction products. The solar interior is dense, and the reactions occur deep in the Sun where temperatures are highest. It takes about 32,000 years for the energy to diffuse to the surface and radiate away. However, the neutrinos escape the Sun in less than two seconds, carrying their energy with them, because they interact so weakly that the Sun is transparent to them. Negative feedback in the Sun acts as a thermostat to regulate the overall energy output. For instance, if the interior of the Sun becomes hotter than normal, the reaction rate increases, producing energy that expands the interior. This cools it and lowers the reaction rate. Conversely, if the interior becomes too cool, it contracts, increasing the temperature and reaction rate (see Figure 32.19). Stars like the Sun are stable for billions of years, until a significant fraction of their hydrogen has been depleted. What happens then is discussed in Introduction to Frontiers of Physics.

Theories of the proton-proton cycle (and other energy-producing cycles in stars) were pioneered by the German-born, American physicist Hans Bethe (1906–2005), starting in 1938. He was awarded the 1967 Nobel Prize in physics for this work, and he has made many other contributions to physics and society. Neutrinos produced in these cycles escape so readily that they provide us an excellent means to test these theories and study stellar interiors. Detectors have been constructed and operated for more than four decades now to measure solar neutrinos (see Figure 32.20). Although solar neutrinos are detected and neutrinos were observed from Supernova 1987A (Figure 32.21), too few solar neutrinos were observed to be consistent with predictions of solar energy production. After many years, this solar neutrino problem was resolved with a blend of theory and experiment that showed that the neutrino does indeed have mass. It was also found that there are three types of neutrinos, each associated with a different type of nuclear decay.
This array of photomultiplier tubes is part of the large solar neutrino detector at the Fermi National Accelerator Laboratory in Illinois. In these experiments, the neutrinos interact with heavy water and produce flashes of light, which are detected by the photomultiplier tubes. In spite of its size and the huge flux of neutrinos that strike it, very few are detected each day since they interact so weakly. This, of course, is the same reason they escape the Sun so readily. (credit: Fred Ullrich)

Supernovas are the source of elements heavier than iron. Energy released powers nucleosynthesis. Spectroscopic analysis of the ring of material ejected by Supernova 1987A observable in the southern hemisphere, shows evidence of heavy elements. The study of this supernova also provided indications that neutrinos might have mass. (credit: NASA, ESA, and P. Challis)

The proton-proton cycle is not a practical source of energy on Earth, in spite of the great abundance of hydrogen (\(^1\text{H}\)). The reaction

\[^1\text{H} + ^1\text{H} \rightarrow ^2\text{H} + e^+ + \nu_e \]

has a very low probability of occurring. (This is why our Sun will last for about ten billion years.) However, a number of other fusion reactions are easier to induce. Among them are:

\begin{align*}
^2\text{H} + ^2\text{H} &\rightarrow ^3\text{H} + ^1\text{H} \quad (4.03 \text{ MeV}) \\
^2\text{H} + ^3\text{H} &\rightarrow ^5\text{He} + n \quad (3.27 \text{ MeV}) \\
^2\text{H} + ^3\text{H} &\rightarrow ^4\text{He} + n \quad (17.59 \text{ MeV}) \\
^2\text{H} + ^2\text{H} &\rightarrow ^4\text{He} + \gamma \quad (23.85 \text{ MeV}).
\end{align*}

Deuterium (\(^2\text{H}\)) is about 0.015% of natural hydrogen, so there is an immense amount of it in sea water alone. In addition to an abundance of deuterium fuel, these fusion reactions produce large energies per reaction (in parentheses), but they do not produce much radioactive waste. Tritium (\(^3\text{H}\)) is radioactive, but it is consumed as a fuel (the reaction \(^2\text{H} + ^3\text{H} \rightarrow ^4\text{He} + n\)), and the neutrons and \(\gamma\)s can be shielded. The neutrons produced can also be used to create more energy and fuel in reactions like

\[n + ^1\text{H} \rightarrow ^2\text{H} + \gamma \quad (20.68 \text{ MeV}) \] \hfill (32.21)

and

\[n + ^1\text{H} \rightarrow ^2\text{H} + \gamma \quad (2.22 \text{ MeV}) \] \hfill (32.22)

Deuterium (\(^2\text{H}\)) is about 0.015% of natural hydrogen, so there is an immense amount of it in sea water alone. In addition to an abundance of deuterium fuel, these fusion reactions produce large energies per reaction (in parentheses), but they do not produce much radioactive waste. Tritium (\(^3\text{H}\)) is radioactive, but it is consumed as a fuel (the reaction \(^2\text{H} + ^3\text{H} \rightarrow ^4\text{He} + n\)), and the neutrons and \(\gamma\)s can be shielded. The neutrons produced can also be used to create more energy and fuel in reactions like

\[n + ^1\text{H} \rightarrow ^2\text{H} + \gamma \quad (20.68 \text{ MeV}) \] \hfill (32.21)

and

\[n + ^1\text{H} \rightarrow ^2\text{H} + \gamma \quad (2.22 \text{ MeV}) \] \hfill (32.22)

Note that these last two reactions, and \(^2\text{H} + ^2\text{H} \rightarrow ^4\text{He} + \gamma\), put most of their energy output into the \(\gamma\) ray, and such energy is difficult to utilize.

The three keys to practical fusion energy generation are to achieve the temperatures necessary to make the reactions likely, to raise the density of the fuel, and to confine it long enough to produce large amounts of energy. These three factors—temperature, density, and time—complement one another, and so a deficiency in one can be compensated for by the others. Ignition is defined to occur when the reactions produce enough energy to be self-sustaining after external energy input is cut off. This goal, which must be reached before commercial plants can be a reality, has not been achieved. Another milestone, called break-even, occurs when the fusion power produced equals the heating power input. Break-even has nearly been reached and gives hope that ignition and commercial plants may become a reality in a few decades.

Two techniques have shown considerable promise. The first of these is called magnetic confinement and uses the property that charged particles have difficulty crossing magnetic field lines. The tokamak, shown in Figure 32.22, has shown particular promise. The tokamak’s toroidal coil confines charged particles into a circular path with a helical twist due to the circulating ions themselves. In 1995, the Tokamak Fusion Test Reactor at Princeton in the US achieved world-record plasma temperatures as high as 500 million degrees Celsius. This facility operated between 1982 and 1997. A joint international effort is underway in France to build a tokamak-type reactor that will be the stepping stone to commercial power. ITER, as it is called, will be a full-scale device that aims to demonstrate the feasibility of fusion energy. It will generate 500 MW of power for extended periods of
time and will achieve break-even conditions. It will study plasmas in conditions similar to those expected in a fusion power plant. Completion is scheduled for 2018.

Figure 32.22 (a) Artist’s rendition of ITER, a tokamak-type fusion reactor being built in southern France. It is hoped that this gigantic machine will reach the break-even point. Completion is scheduled for 2018. (credit: Stephan Mosel, Flickr)

The second promising technique aims multiple lasers at tiny fuel pellets filled with a mixture of deuterium and tritium. Huge power input heats the fuel, evaporating the confining pellet and crushing the fuel to high density with the expanding hot plasma produced. This technique is called inertial confinement, because the fuel’s inertia prevents it from escaping before significant fusion can take place. Higher densities have been reached than with tokamaks, but with smaller confinement times. In 2009, the Lawrence Livermore Laboratory (CA) completed a laser fusion device with 192 ultraviolet laser beams that are focused upon a D-T pellet (see Figure 32.23).

Figure 32.23 National Ignition Facility (CA). This image shows a laser bay where 192 laser beams will focus onto a small D-T target, producing fusion. (credit: Lawrence Livermore National Laboratory, Lawrence Livermore National Security, LLC, and the Department of Energy)

Example 32.2 Calculating Energy and Power from Fusion

(a) Calculate the energy released by the fusion of a 1.00-kg mixture of deuterium and tritium, which produces helium. There are equal numbers of deuterium and tritium nuclei in the mixture.

(b) If this takes place continuously over a period of a year, what is the average power output?

Strategy

According to $^2\text{H} + ^3\text{H} \rightarrow ^4\text{He} + n$, the energy per reaction is 17.59 MeV. To find the total energy released, we must find the number of deuterium and tritium atoms in a kilogram. Deuterium has an atomic mass of about 2 and tritium has an atomic mass of about 3, for a total of about 5 g per mole of reactants or about 200 mol in 1.00 kg. To get a more precise figure, we will use the atomic masses from Appendix A. The power output is best expressed in watts, and so the energy output needs to be calculated in joules and then divided by the number of seconds in a year.

Solution for (a)

The atomic mass of deuterium (^2H) is 2.014102 u, while that of tritium (^3H) is 3.016049 u, for a total of 5.032151 u per reaction. So a mole of reactants has a mass of 5.03 g, and in 1.00 kg there are $(1000 \text{ g}) / (5.03 \text{ g/mol}) = 198.8 \text{ mol of reactants}$. The number of reactions that take place is therefore

$$ (198.8 \text{ mol}) (6.02 \times 10^{23} \text{ mol}^{-1}) = 1.20 \times 10^{26} \text{ reactions}. \tag{32.23} $$

The total energy output is the number of reactions times the energy per reaction:

$$ E = (1.20 \times 10^{26} \text{ reactions}) (17.59 \text{ MeV/reaction}) (1.602 \times 10^{-13} \text{ J/MeV}) \tag{32.24} $$

$$ = 3.37 \times 10^{14} \text{ J}. $$

Solution for (b)
Power is energy per unit time. One year has \(3.16 \times 10^7\) s, so

\[
P = \frac{E}{t} = \frac{3.37 \times 10^{14} \text{ J}}{3.16 \times 10^7 \text{ s}} = 1.07 \times 10^7 \text{ W} = 10.7 \text{ MW}.
\] (32.25)

Discussion

By now we expect nuclear processes to yield large amounts of energy, and we are not disappointed here. The energy output of \(3.37 \times 10^{14}\) J from fusing 1.00 kg of deuterium and tritium is equivalent to 2.6 million gallons of gasoline and about eight times the energy output of the bomb that destroyed Hiroshima. Yet the average backyard swimming pool has about 6 kg of deuterium in it, so that fuel is plentiful if it can be utilized in a controlled manner. The average power output over a year is more than 10 MW, impressive but a bit small for a commercial power plant. About 32 times this power output would allow generation of 100 MW of electricity, assuming an efficiency of one-third in converting the fusion energy to electrical energy.

32.6 Fission

Nuclear fission is a reaction in which a nucleus is split (or fissured). Controlled fission is a reality, whereas controlled fusion is a hope for the future. Hundreds of nuclear fission power plants around the world attest to the fact that controlled fission is practical and, at least in the short term, economical, as seen in Figure 32.24. Whereas nuclear power was of little interest for decades following TMI and Chernobyl (and now Fukushima Daiichi), growing concerns over global warming has brought nuclear power back on the table as a viable energy alternative. By the end of 2009, there were 442 reactors operating in 30 countries, providing 15% of the world's electricity. France provides over 75% of its electricity with nuclear power, while the US has 104 operating reactors providing 20% of its electricity. Australia and New Zealand have none. China is building nuclear power plants at the rate of one start every month.

Fission is the opposite of fusion and releases energy only when heavy nuclei are split. As noted in Fusion, energy is released if the products of a nuclear reaction have a greater binding energy per nucleon \(\frac{BE}{A}\) than the parent nuclei. Figure 32.25 shows that \(\frac{BE}{A}\) is greater for medium-mass nuclei than heavy nuclei, implying that when a heavy nucleus is split, the products have less mass per nucleon, so that mass is destroyed and energy is released in the reaction. The amount of energy per fission reaction can be large, even by nuclear standards. The graph in Figure 32.25 shows \(\frac{BE}{A}\) to be about 7.6 MeV/nucleon for the heaviest nuclei \((A\) about 240), while \(\frac{BE}{A}\) is about 8.6 MeV/nucleon for nuclei having \(A\) about 120. Thus, if a heavy nucleus splits in half, then about 1 MeV per nucleon, or approximately 240 MeV per fission, is released. This is about 10 times the energy per fusion reaction, and about 100 times the energy of the average \(\alpha\), \(\beta\), or \(\gamma\) decay.

Example 32.3 Calculating Energy Released by Fission

Calculate the energy released in the following spontaneous fission reaction:

\[
{238\text{U}} \rightarrow{95\text{Sr}} + {140\text{Xe}} + 3\text{n}
\] (32.26)

given the atomic masses to be \(m({238\text{U}}) = 238.050784\) u, \(m({95\text{Sr}}) = 94.919388\) u, \(m({140\text{Xe}}) = 139.921610\) u, and \(m(n) = 1.008665\) u.

Strategy

As always, the energy released is equal to the mass destroyed times \(c^2\), so we must find the difference in mass between the parent \(^{238}\text{U}\) and the fission products.

Solution

The products have a total mass of
\[m_{\text{products}} = 94.919388 \text{ u} + 139.921610 \text{ u} + 3(1.008665 \text{ u}) \]
\[= 237.866933 \text{ u}. \]

The mass lost is the mass of \(^{238}\text{U} \) minus \(m_{\text{products}} \), or
\[\Delta m = 238.050784 \text{ u} - 237.8669933 \text{ u} = 0.183791 \text{ u}, \]
so the energy released is
\[E = (\Delta m)c^2 \]
\[= (0.183791 \text{ u}) \frac{931.5 \text{ MeV/c}^2}{\text{u}} = 171.2 \text{ MeV}. \]

Discussion

A number of important things arise in this example. The 171-MeV energy released is large, but a little less than the earlier estimated 240 MeV. This is because this fission reaction produces neutrons and does not split the nucleus into two equal parts. Fission of a given nuclide, such as \(^{238}\text{U} \), does not always produce the same products. Fission is a statistical process in which an entire range of products are produced with various probabilities. Most fission produces neutrons, although the number varies with each fission. This is an extremely important aspect of fission, because neutrons can induce more fission, enabling self-sustaining chain reactions.

Spontaneous fission can occur, but this is usually not the most common decay mode for a given nuclide. For example, \(^{238}\text{U} \) can spontaneously fission, but it decays mostly by \(\alpha \) emission. Neutron-induced fission is crucial as seen in Figure 32.25. Being chargeless, even low-energy neutrons can strike a nucleus and be absorbed once they feel the attractive nuclear force. Large nuclei are described by a liquid drop model with surface tension and oscillation modes, because the large number of nucleons act like atoms in a drop. The neutron is attracted and thus, deposits energy, causing the nucleus to deform as a liquid drop. If stretched enough, the nucleus narrows in the middle. The number of nucleons in contact and the strength of the nuclear force binding the nucleus together are reduced. Coulomb repulsion between the two ends then succeeds in fissioning the nucleus, which pops like a water drop into two large pieces and a few neutrons. Neutron-induced fission can be written as
\[n + ^{A}\text{X} \rightarrow \text{FF}_{1} + \text{FF}_{2} + x\text{n}, \]
where \(\text{FF}_{1} \) and \(\text{FF}_{2} \) are the two daughter nuclei, called fission fragments, and \(x \) is the number of neutrons produced. Most often, the masses of the fission fragments are not the same. Most of the released energy goes into the kinetic energy of the fission fragments, with the remainder going into the neutrons and excited states of the fragments. Since neutrons can induce fission, a self-sustaining chain reaction is possible, provided more than one neutron is produced on average — that is, if \(x > 1 \) in \(n + ^{A}\text{X} \rightarrow \text{FF}_{1} + \text{FF}_{2} + x\text{n} \). This can also be seen in Figure 32.26.

An example of a typical neutron-induced fission reaction is
\[n + ^{235}\text{U} \rightarrow ^{142}\text{Ba} + ^{91}\text{Kr} + 3\text{n}. \]

Note that in this equation, the total charge remains the same (is conserved): \(92 + 0 = 56 + 36 \). Also, as far as whole numbers are concerned, the mass is constant: \(1 + 235 = 142 + 91 + 3 \). This is not true when we consider the masses out to 6 or 7 significant places, as in the previous example.
Neutron-induced fission is shown. First, energy is put into this large nucleus when it absorbs a neutron. Acting like a struck liquid drop, the nucleus deforms and begins to narrow in the middle. Since fewer nucleons are in contact, the repulsive Coulomb force is able to break the nucleus into two parts with some neutrons also flying away.

A chain reaction can produce self-sustained fission if each fission produces enough neutrons to induce at least one more fission. This depends on several factors, including how many neutrons are produced in an average fission and how easy it is to make a particular type of nuclide fission.

Not every neutron produced by fission induces fission. Some neutrons escape the fissionable material, while others interact with a nucleus without making it fission. We can enhance the number of fissions produced by neutrons by having a large amount of fissionable material. The minimum amount necessary for self-sustained fission of a given nuclide is called its critical mass. Some nuclides, such as 239Pu, produce more neutrons per fission than others, such as 235U. Additionally, some nuclides are easier to make fission than others. In particular, 235U and 239Pu are easier to fission than the much more abundant 238U. Both factors affect critical mass, which is smallest for 239Pu.
The reason ^{235}U and ^{239}Pu are easier to fission than ^{238}U is that the nuclear force is more attractive for an even number of neutrons in a nucleus than for an odd number. Consider that $^{235}_{92}\text{U}_{143}$ has 143 neutrons, and $^{239}_{94}\text{Pu}_{145}$ has 145 neutrons, whereas $^{238}_{92}\text{U}_{146}$ has 146. When a neutron encounters a nucleus with an odd number of neutrons, the nuclear force is more attractive, because the additional neutron will make the number even. About 2-MeV more energy is deposited in the resulting nucleus than would be the case if the number of neutrons was already even. This extra energy produces greater deformation, making fission more likely. Thus, ^{235}U and ^{239}Pu are superior fission fuels. The isotope ^{235}U is only 0.72 % of natural uranium, while ^{238}U is 99.27%, and ^{239}Pu does not exist in nature. Australia has the largest deposits of uranium in the world, standing at 28% of the total. This is followed by Kazakhstan and Canada. The US has only 3% of global reserves.

Most fission reactors utilize ^{235}U, which is separated from ^{238}U at some expense. This is called enrichment. The most common separation method is gaseous diffusion of uranium hexafluoride (UF_6) through membranes. Since ^{235}U has less mass than ^{238}U, its UF_6 molecules have higher average velocity at the same temperature and diffuse faster. Another interesting characteristic of ^{235}U is that it preferentially absorbs very slow moving neutrons (with energies a fraction of an eV), whereas fission reactions produce fast neutrons with energies in the order of an MeV. To make a self-sustained fission reactor with ^{235}U, it is thus necessary to slow down (“thermalize”) the neutrons. Water is very effective, since neutrons collide with protons in water molecules and lose energy. Figure 32.27 shows a schematic of a reactor design, called the pressurized water reactor.

![Figure 32.27](image)

Figure 32.27 A pressurized water reactor is cleverly designed to control the fission of large amounts of ^{235}U, while using the heat produced in the fission reaction to create steam for generating electrical energy. Control rods adjust neutron flux so that criticality is obtained, but not exceeded. In case the reactor overheats and boils the water away, the chain reaction terminates, because water is needed to thermalize the neutrons. This inherent safety feature can be overwhelmed in extreme circumstances.

Control rods containing nuclides that very strongly absorb neutrons are used to adjust neutron flux. To produce large power, reactors contain hundreds to thousands of critical masses, and the chain reaction easily becomes self-sustaining, a condition called criticality. Neutron flux should be carefully regulated to avoid an exponential increase in fissions, a condition called supercriticality. Control rods help prevent overheating, perhaps even a meltdown or explosive disassembly. The water that is used to thermalize neutrons, necessary to get them to induce fission in ^{235}U, and achieve criticality, provides a negative feedback for temperature increases. In case the reactor overheats and boils the water to steam or is breached, the absence of water kills the chain reaction. Considerable heat, however, can still be generated by the reactor’s radioactive fission products. Other safety features, thus, need to be incorporated in the event of a loss of coolant accident, including auxiliary cooling water and pumps.

Example 32.4 Calculating Energy from a Kilogram of Fissionable Fuel

Calculate the amount of energy produced by the fission of 1.00 kg of ^{235}U, given the average fission reaction of ^{235}U produces 200 MeV.

Strategy

The total energy produced is the number of ^{235}U atoms times the given energy per ^{235}U fission. We should therefore find the number of ^{235}U atoms in 1.00 kg.

Solution
The number of ^{235}U atoms in 1.00 kg is Avogadro's number times the number of moles. One mole of ^{235}U has a mass of 235.04 g; thus, there are $(1000 \text{ g}) / (235.04 \text{ g/mol}) = 4.25 \text{ mol}$. The number of ^{235}U atoms is therefore,

$$ (4.25 \text{ mol}) (6.02 \times 10^{23} \frac{\text{atoms}}{\text{mol}}) = 2.65 \times 10^{24} \text{ atoms}. $$

So the total energy released is

$$ E = (2.65 \times 10^{24} \text{ atoms}) \left(\frac{200 \text{ MeV}}{235 \text{ atom}} \right) \left(\frac{1.60 \times 10^{-13} \text{ J}}{1 \text{ MeV}} \right) $$

$$ = 8.21 \times 10^{13} \text{ J}. $$

Discussion

This is another impressively large amount of energy, equivalent to about 14,000 barrels of crude oil or 600,000 gallons of gasoline. But, it is only one-fourth the energy produced by the fusion of a kilogram mixture of deuterium and tritium as seen in Example 32.2. Even though each fission reaction yields about ten times the energy of a fusion reaction, the energy per kilogram of fission fuel is less, because there are far fewer moles per kilogram of the heavy nuclides. Fission fuel is also much more scarce than fusion fuel, and less than 1% of uranium (the ^{235}U) is readily usable.

One nuclide already mentioned is ^{239}Pu, which has a 24,120-yr half-life and does not exist in nature. Plutonium-239 is manufactured from ^{238}U in reactors, and it provides an opportunity to utilize the other 99% of natural uranium as an energy source. The following reaction sequence, called breeding, produces ^{239}Pu.

Breeding begins with neutron capture by ^{238}U:

$$ ^{238}\text{U} + n \rightarrow ^{239}\text{U} + \gamma. $$

Uranium-239 then β^- decays:

$$ ^{239}\text{U} \rightarrow ^{239}\text{Np} + \beta^- + \nu_e (t_{1/2} = 23 \text{ min}). $$

Neptunium-239 also β^- decays:

$$ ^{239}\text{Np} \rightarrow ^{239}\text{Pu} + \beta^- + \nu_e (t_{1/2} = 2.4 \text{ d}). $$

Plutonium-239 builds up in reactor fuel at a rate that depends on the probability of neutron capture by ^{238}U (all reactor fuel contains more ^{238}U than ^{235}U). Reactors designed specifically to make plutonium are called breeder reactors. They seem to be inherently more hazardous than conventional reactors, but it remains unknown whether their hazards can be made economically acceptable. The four reactors at Chernobyl, including the one that was destroyed, were built to breed plutonium and produce electricity. These reactors had a design that was significantly different from the pressurized water reactor illustrated above.

Plutonium-239 has advantages over ^{235}U as a reactor fuel — it produces more neutrons per fission on average, and it is easier for a thermal neutron to cause it to fission. It is also chemically different from uranium, so it is inherently easier to separate from uranium ore. This means ^{239}Pu has a particularly small critical mass, an advantage for nuclear weapons.

PhET Explorations: Nuclear Fission

Start a chain reaction, or introduce non-radioactive isotopes to prevent one. Control energy production in a nuclear reactor!

PhET Interactive Simulation

Figure 32.28 Nuclear Fission (http://cnx.org/content/m42662/1.8/nuclear-fission_en.jar)

32.7 Nuclear Weapons

The world was in turmoil when fission was discovered in 1938. The discovery of fission, made by two German physicists, Otto Hahn and Fritz Strassman, was quickly verified by two Jewish refugees from Nazi Germany, Lise Meitner and her nephew Otto Frisch. Fermi, among others, soon found that not only did neutrons induce fission; more neutrons were produced during fission. The possibility of a self-sustained chain reaction was immediately recognized by leading scientists the world over. The enormous energy known to be in nuclei, but considered inaccessible, now seemed to be available on a large scale.
Within months after the announcement of the discovery of fission, Adolf Hitler banned the export of uranium from newly occupied Czechoslovakia. It seemed that the military value of uranium had been recognized in Nazi Germany, and that a serious effort to build a nuclear bomb had begun.

Alarmed scientists, many of them who fled Nazi Germany, decided to take action. None was more famous or revered than Einstein. It was felt that his help was needed to get the American government to make a serious effort at nuclear weapons as a matter of survival. Leo Szilard, an escaped Hungarian physicist, took a draft of a letter to Einstein, who, although pacifistic, signed the final version. The letter was for President Franklin Roosevelt, warning of the German potential to build extremely powerful bombs of a new type. It was sent in August of 1939, just before the German invasion of Poland that marked the start of World War II.

It was not until December 6, 1941, the day before the Japanese attack on Pearl Harbor, that the United States made a massive commitment to building a nuclear bomb. The top secret Manhattan Project was a crash program aimed at beating the Germans. It was carried out in remote locations, such as Los Alamos, New Mexico, whenever possible, and eventually came to cost billions of dollars and employ the efforts of more than 100,000 people. J. Robert Oppenheimer (1904–1967), whose talent and ambitions made him ideal, was chosen to head the project. The first major step was made by Enrico Fermi and his group in December 1942, when they achieved the first self-sustained nuclear reactor. This first “atomic pile”, built in a squash court at the University of Chicago, used carbon blocks to thermalize neutrons. It not only proved that the chain reaction was possible, it began the era of nuclear reactors. Glenn Seaborg, an American chemist and physicist, received the Nobel Prize in physics in 1951 for discovery of several transuranic elements, including plutonium. Carbon-moderated reactors are relatively inexpensive and simple in design and are still used for breeding plutonium, such as at Chernobyl, where two such reactors remain in operation.

Plutonium was recognized as easier to fission with neutrons and, hence, a superior fission material very early in the Manhattan Project. Plutonium availability was uncertain, and so a uranium bomb was developed simultaneously. Figure 32.29 shows a gun-type bomb, which takes two subcritical uranium masses and blows them together. To get an appreciable yield, the critical mass must be held together by the explosive charges inside the cannon barrel for a few microseconds. Since the buildup of the uranium chain reaction is relatively slow, the device to hold the critical mass together can be relatively simple. Owing to the fact that the rate of spontaneous fission is low, a neutron source is triggered at the same time the critical mass is assembled.

![Figure 32.29](image)

A gun-type fission bomb for ^{235}U utilizes two subcritical masses forced together by explosive charges inside a cannon barrel. The energy yield depends on the amount of uranium and the time it can be held together before it disassembles itself.

Plutonium’s special properties necessitated a more sophisticated critical mass assembly, shown schematically in Figure 32.30. A spherical mass of plutonium is surrounded by shape charges (high explosives that release most of their blast in one direction) that implode the plutonium, crushing it into a smaller volume to form a critical mass. The implosion technique is faster and more effective, because it compresses three-dimensionally rather than one-dimensionally as in the gun-type bomb. Again, a neutron source must be triggered at just the correct time to initiate the chain reaction.
Figure 32.30 An implosion created by high explosives compresses a sphere of ^{239}Pu into a critical mass. The superior fissionability of plutonium has made it the universal bomb material.

Owing to its complexity, the plutonium bomb needed to be tested before there could be any attempt to use it. On July 16, 1945, the test named Trinity was conducted in the isolated Alamogordo Desert about 200 miles south of Los Alamos (see Figure 32.31). A new age had begun. The yield of this device was about 10 kilotons (kT), the equivalent of 5000 of the largest conventional bombs.

Figure 32.31 Trinity test (1945), the first nuclear bomb (credit: United States Department of Energy)

Although Germany surrendered on May 7, 1945, Japan had been steadfastly refusing to surrender for many months, forcing large casualties. Invasion plans by the Allies estimated a million casualties of their own and untold losses of Japanese lives. The bomb was viewed as a way to end the war. The first was a uranium bomb dropped on Hiroshima on August 6. Its yield of about 15 kT destroyed the city and killed an estimated 80,000 people, with 100,000 more being seriously injured (see Figure 32.32). The second was a plutonium bomb dropped on Nagasaki only three days later, on August 9. Its 20 kT yield killed at least 50,000 people, something less than Hiroshima because of the hilly terrain and the fact that it was a few kilometers off target. The Japanese were told that one bomb a week would be dropped until they surrendered unconditionally, which they did on August 14. In actuality, the United States had only enough plutonium for one more and as yet unassembled bomb.

Figure 32.32 Destruction in Hiroshima (credit: United States Federal Government)

Knowing that fusion produces several times more energy per kilogram of fuel than fission, some scientists pushed the idea of a fusion bomb starting very early on. Calling this bomb the Super, they realized that it could have another advantage over fission—high-energy neutrons would aid fusion, while they are ineffective in ^{239}Pu fission. Thus the fusion bomb could be virtually unlimited in energy release. The first such bomb was detonated
by the United States on October 31, 1952, at Eniwetok Atoll with a yield of 10 megatons (MT), about 670 times that of the fission bomb that destroyed Hiroshima. The Soviets followed with a fusion device of their own in August 1953, and a weapons race, beyond the aim of this text to discuss, continued until the end of the Cold War.

Figure 32.33 shows a simple diagram of how a thermonuclear bomb is constructed. A fission bomb is exploded next to fusion fuel in the solid form of lithium deuteride. Before the shock wave blows it apart, γ rays heat and compress the fuel, and neutrons create tritium through the reaction $n + ^6\text{Li} \rightarrow ^3\text{H} + ^4\text{He}$. Additional fusion and fission fuels are enclosed in a dense shell of ^{238}U. The shell reflects some of the neutrons back into the fuel to enhance its fusion, but at high internal temperatures fast neutrons are created that also cause the plentiful and inexpensive ^{238}U to fission, part of what allows thermonuclear bombs to be so large.

The energy yield and the types of energy produced by nuclear bombs can be varied. Energy yields in current arsenals range from about 0.1 kT to 20 MT, although the Soviets once detonated a 67 MT device. Nuclear bombs differ from conventional explosives in more than size. Figure 32.34 shows the approximate fraction of energy output in various forms for conventional explosives and for two types of nuclear bombs. Nuclear bombs put a much larger fraction of their output into thermal energy than do conventional bombs, which tend to concentrate the energy in blast. Another difference is the immediate and residual radiation energy from nuclear weapons. This can be adjusted to put more energy into radiation (the so-called neutron bomb) so that the bomb can be used to irradiate advancing troops without killing friendly troops with blast and heat.
Anger camera: a common medical imaging device that uses a scintillator connected to a series of photomultipliers

break-even: when fusion power produced equals the heating power input

breeder reactors: reactors that are designed specifically to make plutonium

breeding: reaction process that produces ^{239}Pu

critical mass: minimum amount necessary for self-sustained fission of a given nuclide

criticality: condition in which a chain reaction easily becomes self-sustaining

At its peak in 1986, the combined arsenals of the United States and the Soviet Union totaled about 60,000 nuclear warheads. In addition, the British, French, and Chinese each have several hundred bombs of various sizes, and a few other countries have a small number. Nuclear weapons are generally divided into two categories. Strategic nuclear weapons are those intended for military targets, such as bases and missile complexes, and moderate to large cities. There were about 20,000 strategic weapons in 1988. Tactical weapons are intended for use in smaller battles. Since the collapse of the Soviet Union and the end of the Cold War in 1989, most of the 32,000 tactical weapons (including Cruise missiles, artillery shells, land mines, torpedoes, depth charges, and backpacks) have been demobilized, and parts of the strategic weapon systems are being dismantled with warheads and missiles being disassembled. According to the Treaty of Moscow of 2002, Russia and the United States have been required to reduce their strategic nuclear arsenal down to about 2000 warheads each.

A few small countries have built or are capable of building nuclear bombs, as are some terrorist groups. Two things are needed—a minimum level of technical expertise and sufficient fissionable material. The first is easy. Fissionable material is controlled but is also available. There are international agreements and organizations that attempt to control nuclear proliferation, but it is increasingly difficult given the availability of fissionable material and the small amount needed for a crude bomb. The production of fissionable fuel itself is technologically difficult. However, the presence of large amounts of such material worldwide, though in the hands of a few, makes control and accountability crucial.
fission fragments: a daughter nuclei

food irradiation: treatment of food with ionizing radiation

free radicals: ions with unstable oxygen- or hydrogen-containing molecules

gamma camera: another name for an Anger camera

gray (Gy): the SI unit for radiation dose which is defined to be $1 \text{ Gy} = 1 \text{ J/kg} = 100 \text{ rad}$

high dose: a dose greater than 1 Sv (100 rem)

hormesis: a term used to describe generally favorable biological responses to low exposures of toxins or radiation

ignition: when a fusion reaction produces enough energy to be self-sustaining after external energy input is cut off

inertial confinement: a technique that aims multiple lasers at tiny fuel pellets evaporating and crushing them to high density

linear hypothesis: assumption that risk is directly proportional to risk from high doses

liquid drop model: a model of nucleus (only to understand some of its features) in which nucleons in a nucleus act like atoms in a drop

low dose: a dose less than 100 mSv (10 rem)

magnetic confinement: a technique in which charged particles are trapped in a small region because of difficulty in crossing magnetic field lines

moderate dose: a dose from 0.1 Sv to 1 Sv (10 to 100 rem)

neutron-induced fission: fission that is initiated after the absorption of neutron

nuclear fission: reaction in which a nucleus splits

nuclear fusion: a reaction in which two nuclei are combined, or fused, to form a larger nucleus

positron emission tomography (PET): tomography technique that uses β^+ emitters and detects the two annihilation γ rays, aiding in source localization

proton-proton cycle: the combined reactions $^1\text{H}+^1\text{H} \rightarrow ^2\text{H}+e^++\nu_e$, $^1\text{H}+^2\text{H} \rightarrow ^3\text{He}+\gamma$, and $^3\text{He}+^3\text{He} \rightarrow ^4\text{He}+^1\text{H}+^1\text{H}$

quality factor: same as relative biological effectiveness

radiolytic products: compounds produced due to chemical reactions of free radicals

radiopharmaceutical: compound used for medical imaging

radiotherapy: the use of ionizing radiation to treat ailments

rad: the ionizing energy deposited per kilogram of tissue

relative biological effectiveness (RBE): a number that expresses the relative amount of damage that a fixed amount of ionizing radiation of a given type can inflict on biological tissues

roentgen equivalent man (rem): a dose unit more closely related to effects in biological tissue

shielding: a technique to limit radiation exposure

sievert: the SI equivalent of the rem

single-photon-emission computed tomography (SPECT): tomography performed with γ-emitting radiopharmaceuticals

supercriticality: an exponential increase in fissions

tagged: process of attaching a radioactive substance to a chemical compound

therapeutic ratio: the ratio of abnormal cells killed to normal cells killed

Section Summary

32.1 Medical Imaging and Diagnostics

- Radiopharmaceuticals are compounds that are used for medical imaging and therapeutics.
- The process of attaching a radioactive substance is called tagging.
- Table 32.1 lists certain diagnostic uses of radiopharmaceuticals including the isotope and activity typically used in diagnostics.
- One common imaging device is the Anger camera, which consists of a lead collimator, radiation detectors, and an analysis computer.
- Tomography performed with γ-emitting radiopharmaceuticals is called SPECT and has the advantages of x-ray CT scans coupled with organ- and function-specific drugs.
32.2 Biological Effects of Ionizing Radiation

- The biological effects of ionizing radiation are due to two effects it has on cells: interference with cell reproduction, and destruction of cell function.
- A radiation dose unit called the rad is defined in terms of the ionizing energy deposited per kilogram of tissue:
 \[1 \text{ rad} = 0.01 \text{ J/kg}. \]
- The SI unit for radiation dose is the gray (Gy), which is defined to be \(1 \text{ Gy} = 1 \text{ J/kg} = 100 \text{ rad}. \)
- To account for the effect of the type of particle creating the ionization, we use the relative biological effectiveness (RBE) or quality factor (QF) given in Table 32.2 and define a unit called the roentgen equivalent man (rem) as:
 \[\text{rem} = \text{rad} \times \text{RBE}. \]
- Particles that have short ranges or create large ionization densities have RBEs greater than unity. The SI equivalent of the rem is the sievert (Sv), defined to be
 \[\text{Sv} = \text{Gy} \times \text{RBE} \text{ and } 1 \text{ Sv} = 100 \text{ rem}. \]
- Whole-body, single-exposure doses of 0.1 Sv or less are low doses while those of 0.1 to 1 Sv are moderate, and those over 1 Sv are high doses. Some immediate radiation effects are given in Table 32.4. Effects due to low doses are not observed, but their risk is assumed to be directly proportional to those of high doses, an assumption known as the linear hypothesis. Long-term effects are cancer deaths at the rate of \(10^{-6} \text{ rem} \cdot \text{yr} \) and genetic defects at roughly one-third this rate. Background radiation doses and sources are given in Table 32.5. Worldwide average radiation exposure from natural sources, including radon, is about 3 mSv, or 300 mrem. Radiation protection utilizes shielding, distance, and time to limit exposure.

32.3 Therapeutic Uses of Ionizing Radiation

- Radiotherapy is the use of ionizing radiation to treat ailments, now limited to cancer therapy.
- The sensitivity of cancer cells to radiation enhances the ratio of cancer cells killed to normal cells killed, which is called the therapeutic ratio.
- Doses for various organs are limited by the tolerance of normal tissue for radiation. Treatment is localized in one region of the body and spread out in time.

32.5 Fusion

- Nuclear fusion is a reaction in which two nuclei are combined to form a larger nucleus. It releases energy when light nuclei are fused to form medium-mass nuclei.
- Fusion is the source of energy in stars, with the proton-proton cycle,
 \[^1\text{H} + ^1\text{H} \rightarrow ^2\text{H} + e^+ + \nu_e \quad (0.42 \text{ MeV}) \]
 \[^1\text{H} + ^2\text{H} \rightarrow ^3\text{He} + \gamma \quad (5.49 \text{ MeV}) \]
 \[^3\text{He} + ^3\text{He} \rightarrow ^4\text{He} + ^1\text{H} + ^1\text{H} \quad (12.86 \text{ MeV}) \]
- The overall effect of the proton-proton cycle is
 \[2e^- + 4^1\text{H} \rightarrow ^4\text{He} + 2\nu_e + 6\gamma \quad (26.7 \text{ MeV}), \]
 where the 26.7 MeV includes the energy of the positrons emitted and annihilated.
- Attempts to utilize controlled fusion as an energy source on Earth are related to deuterium and tritium, and the reactions play important roles.
- Ignition is the condition under which controlled fusion is self-sustaining; it has not yet been achieved. Break-even, in which the fusion energy output is as great as the external energy input, has nearly been achieved.
- Magnetic confinement and inertial confinement are the two methods being developed for heating fuel to sufficiently high temperatures, at sufficient density, and for sufficiently long times to achieve ignition. The first method uses magnetic fields and the second method uses the momentum of impinging laser beams for confinement.

32.6 Fission

- Nuclear fission is a reaction in which a nucleus is split.
- Fission releases energy when heavy nuclei are split into medium-mass nuclei.
- Self-sustained fission is possible, because neutron-induced fission also produces neutrons that can induce other fissions,
 \[n + ^{\alpha}\text{X} \rightarrow \text{FF}_1 + \text{FF}_2 + x\text{n}, \text{ where } \text{FF}_1 \text{ and } \text{FF}_2 \text{ are the two daughter nuclei, or fission fragments, and } x \text{ is the number of neutrons produced.} \]
- A minimum mass, called the critical mass, should be present to achieve criticality.
- More than a critical mass can produce supercriticality.
- The production of new or different isotopes (especially \(^{239}\text{Pu}\)) by nuclear transformation is called breeding, and reactors designed for this purpose are called breeder reactors.

32.7 Nuclear Weapons

- There are two types of nuclear weapons—fission bombs use fission alone, whereas thermonuclear bombs use fission to ignite fusion.
- Both types of weapons produce huge nuclear reactions in a very short time.
- Energy yields are measured in kilotons or megatons of equivalent conventional explosives and range from 0.1 KT to more than 20 MT.
- Nuclear bombs are characterized by far more thermal output and nuclear radiation output than conventional explosives.
Conceptual Questions

32.1 Medical Imaging and Diagnostics
1. In terms of radiation dose, what is the major difference between medical diagnostic uses of radiation and medical therapeutic uses?
2. One of the methods used to limit radiation dose to the patient in medical imaging is to employ isotopes with short half-lives. How would this limit the dose?

32.2 Biological Effects of Ionizing Radiation
3. Isotopes that emit α radiation are relatively safe outside the body and exceptionally hazardous inside. Yet those that emit γ radiation are hazardous outside and inside. Explain why.
4. Why is radon more closely associated with inducing lung cancer than other types of cancer?
5. The RBE for low-energy β's is 1.7, whereas that for higher-energy β's is only 1. Explain why, considering how the range of radiation depends on its energy.
6. Which methods of radiation protection were used in the device shown in the first photo in Figure 32.35? Which were used in the situation shown in the second photo?

(a)

![Figure 32.35](a) This x-ray fluorescence machine is one of the thousands used in shoe stores to produce images of feet as a check on the fit of shoes. They are unshielded and remain on as long as the feet are in them, producing doses much greater than medical images. Children were fascinated with them. These machines were used in shoe stores until laws preventing such unwarranted radiation exposure were enacted in the 1950s. (credit: Andrew Kuchling)

(b) Now that we know the effects of exposure to radioactive material, safety is a priority. (credit: U.S. Navy)

7. What radioisotope could be a problem in homes built of cinder blocks made from uranium mine tailings? (This is true of homes and schools in certain regions near uranium mines.)

8. Are some types of cancer more sensitive to radiation than others? If so, what makes them more sensitive?

9. Suppose a person swallows some radioactive material by accident. What information is needed to be able to assess possible damage?

32.3 Therapeutic Uses of Ionizing Radiation
10. Radiotherapy is more likely to be used to treat cancer in elderly patients than in young ones. Explain why. Why is radiotherapy used to treat young people at all?

32.4 Food Irradiation
11. Does food irradiation leave the food radioactive? To what extent is the food altered chemically for low and high doses in food irradiation?
12. Compare a low dose of radiation to a human with a low dose of radiation used in food treatment.

13. Suppose one food irradiation plant uses a 137Cs source while another uses an equal activity of 60Co. Assuming equal fractions of the γ rays from the sources are absorbed, why is more time needed to get the same dose using the 137Cs source?

32.5 Fusion
14. Why does the fusion of light nuclei into heavier nuclei release energy?

15. Energy input is required to fuse medium-mass nuclei, such as iron or cobalt, into more massive nuclei. Explain why.

16. In considering potential fusion reactions, what is the advantage of the reaction \(^2\text{H} + ^3\text{H} \rightarrow ^4\text{He} + n \) over the reaction \(^2\text{H} + ^2\text{H} \rightarrow ^3\text{He} + n \)?

17. Give reasons justifying the contention made in the text that energy from the fusion reaction \(^2\text{H} + ^2\text{H} \rightarrow ^4\text{He} + \gamma \) is relatively difficult to capture and utilize.

32.6 Fission

18. Explain why the fission of heavy nuclei releases energy. Similarly, why is it that energy input is required to fission light nuclei?

19. Explain, in terms of conservation of momentum and energy, why collisions of neutrons with protons will thermalize neutrons better than collisions with oxygen.

20. The ruins of the Chernobyl reactor are enclosed in a huge concrete structure built around it after the accident. Some rain penetrates the building in winter, and radioactivity from the building increases. What does this imply is happening inside?

21. Since the uranium or plutonium nucleus fissions into several fission fragments whose mass distribution covers a wide range of pieces, would you expect more residual radioactivity from fission than fusion? Explain.

22. The core of a nuclear reactor generates a large amount of thermal energy from the decay of fission products, even when the power-producing fission chain reaction is turned off. Would this residual heat be greatest after the reactor has run for a long time or short time? What if the reactor has been shut down for months?

23. How can a nuclear reactor contain many critical masses and not go supercritical? What methods are used to control the fission in the reactor?

24. Why can heavy nuclei with odd numbers of neutrons be induced to fission with thermal neutrons, whereas those with even numbers of neutrons require more energy input to induce fission?

25. Why is a conventional fission nuclear reactor not able to explode as a bomb?

32.7 Nuclear Weapons

26. What are some of the reasons that plutonium rather than uranium is used in all fission bombs and as the trigger in all fusion bombs?

27. Use the laws of conservation of momentum and energy to explain how a shape charge can direct most of the energy released in an explosion in a specific direction. (Note that this is similar to the situation in guns and cannons—most of the energy goes into the bullet.)

28. How does the lithium deuteride in the thermonuclear bomb shown in Figure 32.33 supply tritium \((^3\text{H}) \) as well as deuterium \((^2\text{H}) \)?

29. Fallout from nuclear weapons tests in the atmosphere is mainly \(^{90}\text{Sr}\) and \(^{137}\text{Cs}\), which have 28.6- and 32.2- y half-lives, respectively. Atmospheric tests were terminated in most countries in 1963, although China only did so in 1980. It has been found that environmental activities of these two isotopes are decreasing faster than their half-lives. Why might this be?
32.1 Medical Imaging and Diagnostics

30. A neutron generator uses an α source, such as radium, to bombard beryllium, inducing the reaction $^4\text{He} + ^9\text{Be} \rightarrow ^{12}\text{C} + n$. Such neutron sources are called RaBe sources, or PuBe sources if they use plutonium to get the α s. Calculate the energy output of the reaction in MeV.

31. Neutrons from a source (perhaps the one discussed in the preceding problem) bombard natural molybdenum, which is 24% ^{98}Mo. What is the energy output of the reaction $^{98}\text{Mo} + n \rightarrow ^{99}\text{Mo} + \gamma$? The mass of ^{98}Mo is given in Appendix A: Atomic Masses, and that of ^{99}Mo is 98.907711 u.

32. The purpose of producing ^{99}Mo (usually by neutron activation of natural molybdenum, as in the preceding problem) is to produce ^{99m}Tc. Using the rules, verify that the β^- decay of ^{99}Mo produces ^{99m}Tc. (Most ^{99m}Tc nuclei produced in this decay are left in a metastable excited state denoted $^{99m}\text{Tc}^*$.)

33. (a) Two annihilation γ rays in a PET scan originate at the same point and travel to detectors on either side of the patient. If the point of origin is 9.00 cm closer to one of the detectors, what is the difference in arrival times of the photons? (This could be used to give position information, but the time difference is small enough to make it difficult.) (b) How accurately would you need to be able to measure arrival time differences to get a position resolution of 1.00 mm?

34. Table 32.1 indicates that 7.50 mCi of ^{99m}Tc is used in a brain scan. What is the mass of technetium?

35. The activities of ^{131}I and ^{123}I used in thyroid scans are given in Table 32.1 to be 50 and 70 μCi, respectively. Find and compare the masses of ^{131}I and ^{123}I in such scans, given their respective half-lives are 8.04 d and 13.2 h. The masses are so small that the radioiodine is usually mixed with stable iodine as a carrier to ensure normal chemistry and distribution in the body.

36. (a) Neutron activation of sodium, which is 100% ^{23}Na, produces ^{24}Na, which is used in some heart scans, as seen in Table 32.1. The equation for the reaction is $^{23}\text{Na} + n \rightarrow ^{24}\text{Na} + \gamma$. Find its energy output, given the mass of ^{24}Na is 23.990962 u.

37. What is the dose in mSv for: (a) a 0.1 Gy x-ray? (b) 2.5 mGy of neutron exposure to the eye? (c) 1.5 mGy of α exposure?

38. Find the radiation dose in Gy for: (a) A 10-mSv fluoroscopic x-ray series. (b) 50 mSv of skin exposure by an α emitter. (c) 160 mSv of β⁻ and γ rays from the ^{40}K in your body.

39. How many Gy of exposure is needed to give a cancerous tumor a dose of 40 Sv if it is exposed to α activity?

40. What is the dose in Sv in a cancer treatment that exposes the patient to 200 Gy of γ rays?

41. One half the γ rays from ^{99m}Tc are absorbed by a 0.170-mm-thick lead shielding. Half of the γ rays that pass through the first layer of lead are absorbed in a second layer of equal thickness. What thickness of lead will absorb all but one in 1000 of these γ rays?

42. A plumber at a nuclear power plant receives a whole-body dose of 30 mSv in 15 minutes while repairing a crucial valve. Find the radiation-induced yearly risk of death from cancer and the chance of genetic defect from this maximum allowable exposure.

43. In the 1980s, the term picowave was used to describe food irradiation in order to overcome public resistance by playing on the well-known safety of microwave radiation. Find the energy in MeV of a photon having a wavelength of a picometer.

44. Find the mass of ^{239}Pu that has an activity of 1.00 μCi.

32.2 Biological Effects of Ionizing Radiation

39. What is the mass of ^{60}Co in a cancer therapy transillumination unit containing 5.00 kCi of ^{60}Co?

50. Large amounts of ^{65}Zn are produced in copper exposed to accelerator beams. While machining contaminated copper, a physicist ingests $50.0 \mu\text{Ci}$ of ^{65}Zn. Each ^{65}Zn decay emits an average γ-ray energy of 0.550 MeV, 40.0% of which is absorbed in the scientist’s 75.0-kg body. What dose in mSv is caused by this in one day?

51. Naturally occurring ^{40}K is listed as responsible for 16 mrem/y of background radiation. Calculate the mass of ^{40}K that must be inside the 55-kg body of a woman to produce this dose. Each ^{40}K decay emits a 1.32-MeV β⁻, and 50% of the energy is absorbed inside the body.

52. (a) Background radiation due to ^{226}Ra averages only 0.01 mSv/y, but it can range upward depending on where a person lives. Find the mass of ^{226}Ra in the 80.0-kg body of a man who receives a dose of 2.50-mSv/y from it, noting that each ^{226}Ra decay emits a 4.80-MeV α particle. You may neglect dose due to daughters and assume a constant amount, evenly distributed due to balanced ingestion and bodily...
elimination. (b) Is it surprising that such a small mass could cause a measurable radiation dose? Explain.

53. The annual radiation dose from 14C in our bodies is 0.01 mSv/y.

Each 14C decay emits a β^- averaging 0.0750 MeV. Taking the fraction of 14C to be 1.3×10^{-12} N of normal 12C, and assuming the body is 13% carbon, estimate the fraction of the decay energy absorbed. (The rest escapes, exposing those close to you.)

54. If everyone in Australia received an extra 0.05 mSv per year of radiation, what would be the increase in the number of cancer deaths per year? (Assume that time had elapsed for the effects to become apparent.) Assume that there are 200×10^{-4} deaths per Sv of radiation per year. What percent of the actual number of cancer deaths recorded is this?

32.5 Fusion

55. Verify that the total number of nucleons, total charge, and electron family number are conserved for each of the fusion reactions in the proton-proton cycle in

$$1H + 1H \rightarrow 2H + e^+ + \nu_e, \quad 1H + 2H \rightarrow 3He + \gamma,$$

and

$$3He + ^3He \rightarrow 4He + 1H + 1H.$$

(List the value of each of the conserved quantities before and after each of the reactions.)

56. Calculate the energy output in each of the fusion reactions in the proton-proton cycle, and verify the values given in the above summary.

57. Show that the total energy released in the proton-proton cycle is 26.7 MeV, considering the overall effect in $1H + 1H \rightarrow 2H + e^+ + \nu_e,$ $1H + 2H \rightarrow 3He + \gamma,$ and $3He + ^3He \rightarrow 4He + 1H + 1H$ and being certain to include the annihilation energy.

58. Verify by listing the number of nucleons, total charge, and electron family number before and after the cycle that these quantities are conserved in the overall proton-proton cycle in $2e^- + 41H \rightarrow 4He + 2\nu_e + 6\gamma.$

59. The energy produced by the fusion of a 1.00-kg mixture of deuterium and tritium was found in Example Calculating Energy and Power from Fusion. Approximately how many kilograms would be required to supply the annual energy use in the United States?

60. Tritium is naturally rare, but can be produced by the reaction $n + ^3H \rightarrow 3H + \gamma.$ How much energy in MeV is released in this neutron capture?

61. Two fusion reactions mentioned in the text are

$$n + ^3He \rightarrow 4He + \gamma$$

and

$$n + 1H \rightarrow 2H + \gamma.$$

Both reactions release energy, but the second also creates more fuel. Confirm that the energies produced in the reactions are 20.58 and 2.22 MeV, respectively. Comment on which product nuclide is most tightly bound, 4He or $^2H.$

62. (a) Calculate the number of grams of deuterium in an 80,000-L swimming pool, given deuterium is 0.0150% of natural hydrogen.

(b) Find the energy released in joules if this deuterium is fused via the reaction $2H + 2H \rightarrow 3He + n.$

(c) Could the neutrons be used to create more energy?

(d) Discuss the amount of this type of energy in a swimming pool as compared to that in, say, a gallon of gasoline, also taking into consideration that water is far more abundant.

63. How many kilograms of water are needed to obtain the 198.8 mol of deuterium, assuming that deuterium is 0.01500% (by number) of natural hydrogen?

64. The power output of the Sun is 4×10^{26} W.

(a) If 90% of this is supplied by the proton-proton cycle, how many protons are consumed per second?

(b) How many neutrinos per second should there be per square meter at the Earth from this process? This huge number is indicative of how rarely a neutrino interacts, since large detectors observe very few per day.

65. Another set of reactions that result in the fusing of hydrogen into helium in the Sun and especially in hotter stars is called the carbon cycle. It is

$$^{12}C + ^1H \rightarrow ^{13}N + \gamma,$$

$$^{13}N \rightarrow ^{13}C + e^+ + \nu_e,$$

$$^{13}C + ^1H \rightarrow ^{14}N + \gamma,$$

$$^{14}N + ^1H \rightarrow ^{15}O + \gamma,$$

$$^{15}O \rightarrow ^{15}N + e^+ + \nu_e.$$

Write down the overall effect of the carbon cycle (as was done for the proton-proton cycle in $2e^- + 41H \rightarrow 4He + 2\nu_e + 6\gamma$). Note the number of protons (1H) required and assume that the positrons (e^+) annihilate electrons to form more γ rays.

66. (a) Find the total energy released in MeV in each carbon cycle (elaborated in the above problem) including the annihilation energy.

(b) How does this compare with the proton-proton cycle output?

67. Verify that the total number of nucleons, total charge, and electron family number are conserved for each of the fusion reactions in the carbon cycle given in the above problem. (List the value of each of the conserved quantities before and after each of the reactions.)

68. Integrated Concepts

The laser system tested for inertial confinement can produce a 100-kJ pulse only 1.00 ns in duration. (a) What is the power output of the laser system during the brief pulse?

(b) How many photons are in the pulse, given their wavelength is 1.06 μm?

(c) What is the total momentum of all these photons?

(d) How does the total photon momentum compare with that of a single 1.00 MeV deuterium nucleus?

69. Integrated Concepts

Find the amount of energy given to the 4He nucleus and to the γ ray in the reaction $n + ^3He \rightarrow 4He + \gamma,$ using the conservation of momentum principle and taking the reactants to be initially at rest. This should confirm the contention that most of the energy goes to the γ ray.

70. Integrated Concepts

(a) What temperature gas would have atoms moving fast enough to bring two 3He nuclei into contact? Note that, because both are moving, the average kinetic energy only needs to be half the electric potential energy of these doubly charged nuclei when just in contact with one another.

(b) Does this high temperature imply practical difficulties for doing this in controlled fusion?
71. Integrated Concepts

(a) Estimate the years that the deuterium fuel in the oceans could supply the energy needs of the world. Assume world energy consumption to be ten times that of the United States which is 8×10^{19} J/y and that the deuterium in the oceans could be converted to energy with an efficiency of 32%. You must estimate or look up the amount of water in the oceans and take the deuterium content to be 0.015% of natural hydrogen to find the mass of deuterium available. Note that approximate energy yield of deuterium is 3.37×10^{14} J/kg.

(b) Comment on how much this is by any human measure. (It is not an unreasonable result, only an impressive one.)

32.6 Fission

72. (a) Calculate the energy released in the neutron-induced fission (similar to the spontaneous fission in Example 32.3)

$$ n + 238 \text{U} \rightarrow 96 \text{Sr} + 140 \text{Xe} + 3n, $$

given $m(96 \text{Sr}) = 95.921750 \text{ u}$ and $m(140 \text{Xe}) = 139.92164$. (b) This result is about 6 MeV greater than the result for spontaneous fission. Why? (c) Confirm that the total number of nucleons and total charge are conserved in this reaction.

73. (a) Calculate the energy released in the neutron-induced fission reaction

$$ n + 235 \text{U} \rightarrow 92 \text{Kr} + 142 \text{Ba} + 2n, $$

given $m(92 \text{Kr}) = 91.926269 \text{ u}$ and $m(142 \text{Ba}) = 141.916361 \text{ u}$. (b) Confirm that the total number of nucleons and total charge are conserved in this reaction.

74. (a) Calculate the energy released in the neutron-induced fission reaction

$$ n + 239 \text{Pu} \rightarrow 96 \text{Sr} + 140 \text{Ba} + 4n, $$

given $m(96 \text{Sr}) = 95.921750 \text{ u}$ and $m(140 \text{Ba}) = 139.910581 \text{ u}$. (b) Confirm that the total number of nucleons and total charge are conserved in this reaction.

75. Confirm that each of the reactions listed for plutonium breeding just following Example 32.4 conserves the total number of nucleons, the total charge, and electron family number.

76. Breeding plutonium produces energy even before any plutonium is fissioned. (The primary purpose of the four nuclear reactors at Chernobyl was breeding plutonium for weapons. Electrical power was a by-product used by the civilian population.) Calculate the energy produced in each of the reactions listed for plutonium breeding just following Example 32.4. The pertinent masses are $m(239 \text{U}) = 239.054289 \text{ u}$, $m(238 \text{U}) = 238.052932 \text{ u}$, and $m(239 \text{Pu}) = 239.052157 \text{ u}$.

77. The naturally occurring radioactive isotope 232Th does not make good fission fuel, because it has an even number of neutrons; however, it can be bred into a suitable fuel (much as 238U is bred into 239Pu). (a) What are Z and N for 232Th? (b) Write the reaction equation for neutron captured by 232Th and identify the nuclide $A X$ produced in $n + 232 \text{Th} \rightarrow A X + \gamma$. (c) The product nucleus β^- decays, as does its daughter. Write the decay equations for each, and identify the final nucleus. (d) Confirm that the final nucleus has an odd number of neutrons, making it a better fission fuel.

(e) Look up the half-life of the final nucleus to see if it lives long enough to be a useful fuel.

78. The electrical power output of a large nuclear reactor facility is 900 MW. It has a 35.0% efficiency in converting nuclear power to electrical. (a) What is the thermal nuclear power output in megawatts? (b) How many 235U nuclei fission each second, assuming the average fission produces 200 MeV? (c) What mass of 235U is fissioned in one year of full-power operation?

79. A large power reactor that has been in operation for some months is turned off, but residual activity in the core still produces 150 MW of power. If the average energy per decay of the fission products is 1.00 MeV, what is the core activity in curies?

32.7 Nuclear Weapons

80. Find the mass converted into energy by a 120-kT bomb.

81. What mass is converted into energy by a 1.00-MT bomb?

82. Fusion bombs use neutrons from their fission trigger to create tritium fuel in the reaction $n + ^6\text{Li} \rightarrow ^3\text{H} + ^4\text{He}$. What is the energy released by this reaction in MeV?

83. It is estimated that the total explosive yield of all the nuclear bombs in existence currently is about 4,000 MT. (a) Convert this amount of energy to kilowatt-hours, noting that $1 \text{ kW} \cdot \text{h} = 3.60 \times 10^6 \text{ J}$. (b) What would the monetary value of this energy be if it could be converted to electricity costing 10 cents per kW·h?

84. A radiation-enhanced nuclear weapon (or neutron bomb) can have a smaller total yield and still produce more prompt radiation than a conventional nuclear bomb. This allows the use of neutron bombs to kill nearby advancing enemy forces with radiation without blowing up your own forces with the blast. For a 0.500-kT radiation-enhanced weapon and a 1.00-kT conventional nuclear bomb: (a) Compare the blast yields. (b) Compare the prompt radiation yields.

85. (a) How many 239Pu nuclei must fission to produce a 20.0-kT yield, assuming 200 MeV per fission? (b) What is the mass of this much 239Pu?

86. Assume one-fourth of the yield of a typical 320-kT strategic bomb comes from fission reactions averaging 200 MeV and the remainder from fusion reactions averaging 20 MeV. (a) Calculate the number of fissions and the approximate mass of uranium and plutonium fissioned, assuming the average atomic mass to be 238. (b) Find the number of fusions and calculate the approximate mass of fusion fuel, assuming an average total atomic mass of the two nuclei in each reaction to be 5. (c) Considering the masses found, does it seem reasonable that some missiles could carry 10 warheads? Discuss, noting that the nuclear fuel is only a part of the mass of a warhead.

87. This problem gives some idea of the magnitude of the energy yield of a small tactical bomb. Assume that half the energy of a 1.00-kT nuclear depth charge set off under an aircraft carrier goes into lifting it out of the water—that is, into gravitational potential energy. How high is the carrier lifted if its mass is 90,000 tons?

88. It is estimated that weapons tests in the atmosphere have deposited approximately 9 MCI of 90Sr on the surface of the earth. Find the mass of this amount of 90Sr.

89. A 1.00-MT bomb exploded a few kilometers above the ground deposits 25.0% of its energy into radiant heat.
(a) Find the calories per cm^2 at a distance of 10.0 km by assuming a uniform distribution over a spherical surface of that radius.

(b) If this heat falls on a person’s body, what temperature increase does it cause in the affected tissue, assuming it is absorbed in a layer 1.00-cm deep?

90. Integrated Concepts

One scheme to put nuclear weapons to nonmilitary use is to explode them underground in a geologically stable region and extract the geothermal energy for electricity production. There was a total yield of about 4,000 MT in the combined arsenals in 2006. If 1.00 MT per day could be converted to electricity with an efficiency of 10.0%:

(a) What would the average electrical power output be?

(b) How many years would the arsenal last at this rate?