
1) Electron flow is in the direction of conventional current

1) _____

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question

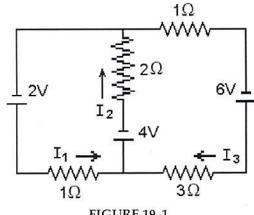
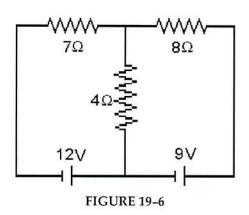

- 2) An electric device delivers a current of 5.0 A for 10 seconds. How many electrons flow through this device?
- 3) A 200-W light bulb is connected across 110 V. What current will flow through this bulb?

Figure 21-16


- 4) Four resistors of values 2Ω , 4Ω , 3Ω , and 9Ω are connected across an 8-V DC source as shown in Figure 21–16. What is the current through the 9– Ω resistor?
- 5) Three identical resistors are connected in series to a 12-V battery. What is the voltage across any one of the resistors?
- 6) Three identical resistors are connected in parallel to a 12-V battery. What is the voltage of any one of the resistors?

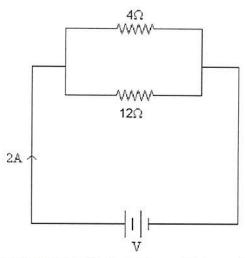
7) Which of the equations here is valid for the circuit shown?

- 8) Four $20-\Omega$ resistors are connected in series. What is the equivalent resistance?
- 8) _____
- 9) Three resistors of 12, 12, and $6.0\,\Omega$ are connected in parallel. A 12–V battery is connected to the combination. What is the current through the $6.0-\Omega$ resistor?
- 9) _____
- 10) A 14–A current flows into a series combination of a 3.0– Ω and a 4.0– Ω resistor. What is the voltage drop across the 4.0– Ω resistor?
- 10) _____
- 11) A 14–A current flows into a series combination of a 3.0– Ω and a 4.0– Ω resistor. What is the voltage drop across the 3.0– Ω resistor?
- 11) _____
- 12) A 22–A current flows into a parallel combination of 4.0 Ω , 6.0 Ω , and 12 Ω resistors. What current flows through the 12– Ω resistor?
- 12) _____
- 13) A 22–A current flows into a parallel combination of a 4.0– Ω , 6.0– Ω , and 12– Ω resistors. What current flows through the 6.0– Ω resistor?
- 13) _____
- 14) Two $4.0-\Omega$ resistors are connected in parallel, and this combination is connected in series with 3.0Ω . What is the effective resistance of this combination?

15) Determine the current in the 7- Ω resistor in Fig. 19-6.

15)

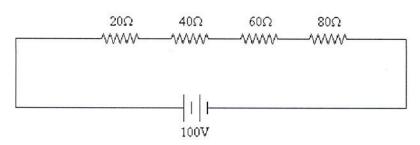
16) Determine the current in the 8- Ω resistor in Fig. 19-6.


16)

17) Determine the current in the $4-\Omega$ resistor in Fig. 19-6.

- 17)
- 18) A 2.0- Ω resistor is in series with a parallel combination of 4.0 Ω , 6.0 Ω , and 12 Ω . What is the equivalent resistance of this combination?
- 18) _____
- 19) Two resistors of 15 and 30 Ω are connected in parallel. If the combination is connected in series with a 9.0-V battery and a 20- Ω resistor, what is the current through the 15- Ω resistor?
- 19) _____

20) Three resistors of 4.0, 6.0, and 10.0Ω are connected in parallel. If the combination is connected in series with a 12.0–V battery and a 2.0– Ω resistor, what is the current through the 10.0 – Ω resistor?	20)
21) A 22–A current flows into a parallel combination of a 4.0– Ω , 6.0– Ω , and 12– Ω resistor. What current flows through the 4.0– Ω resistor?	21)
22) A 6.0– Ω and a 12– Ω resistor are connected in parallel to a 36–V battery. What power is dissipated by the 6.0– Ω resistor?	22)
23) A 100-W light bulb is connected to a 110-V source. What current flows through the lamp?	23)
24) A 100-W light bulb is connected to a 110-V source. What is the resistance of this bulb?	24)
25) The power rating of a resistor is 0.800 W. If the value of the resistor is 400Ω , what is the maximum voltage?	25)
26) The power rating of a resistor is 0.80 W. If the value of the resistor is 400Ω , what is the maximum current it can draw?	26)
27) A light bulb operating at a voltage of 120 Volt has a power of 60 W. What is the current flowing through this bulb?	27)
28) A light bulb operating at a voltage of 120 V has a resistance of 200 Ω . What is the power?	28)
29) The power rating of a 400 Ω resistor is 0.25 W. What is the maximum voltage?	29)
30) A simple circuit has a total resistance of 30 Ω . If a 2.0–A current is maintained in this circuit, how much energy is dissipated in this circuit in 4.0 seconds?	30)
31) A 100–V DC signal is applied to a series circuit composed of four equal resistors 10Ω each. What is the voltage across each resistor?	31)
32) Four resistors of 20Ω , 40Ω , 60Ω , and 80Ω are connected across a DC voltage source. If the current through this circuit is 0.5 A, what is the voltage applied to this circuit?	32)
33) Four resistors of 20 Ω , 40 Ω , 60 Ω , and 80 Ω are connected across a 50-V DC source. What is the current through this circuit?	33)


Figure 21-3

34) A 4- Ω resistor is connected in parallel with a 12- Ω resistor and this combination is connected to a DC power supply with voltage V as shown in Figure 21-3. If the total current in this circuit is 2 A, what is the value of voltage V?

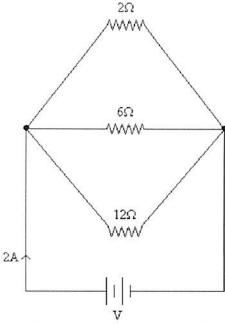
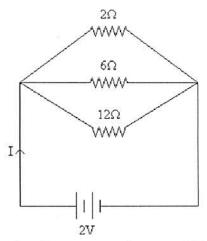

34) _____

Figure 21-4

35) A 100 V DC signal is applied to four resistors as shown in Figure 21–4. The values of the resistors are 20 Ω , 40 Ω , 60 Ω , and 80 Ω . What is the voltage across the 40 Ω resistor?


Figure 21-5

36) Three resistors of values 2 Ω , 6 Ω and 12 Ω are connected across a DC voltage source as shown in Figure 21–5. If the total current through the circuit is 2.0 A, what is the applied voltage?

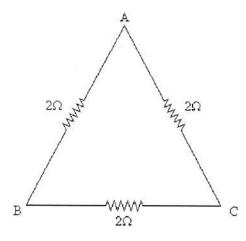
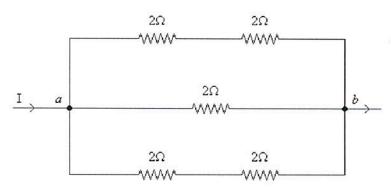

36) _____

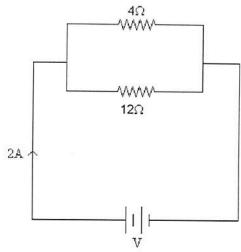
Figure 21-6

37) Three resistors of values 2 Ω , 6 Ω and 12 Ω are connected across a 2.0–V DC voltage source as shown in Figure 21–6. What is the total current *I* flowing this circuit?


Figure 21-7

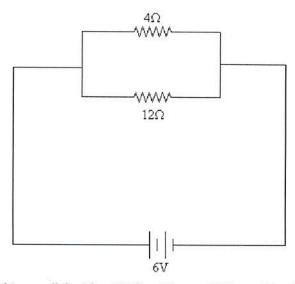
38) Three $2.0-\Omega$ resistors are connected across the sides of an equilateral triangle ABC as shown in Figure 21–7. What is the equivalent resistance between any two points, AB, BC, or AC, of this circuit?

38) _____


Figure 21-8

39) Five equal resistors, of value 2.0 Ω each, are connected as shown in Figure 21–8. What is the equivalent resistance of this circuit?

39)


Figure 21-9

40) A 4.0- Ω resistor is connected in parallel with a 12- Ω resistor and both of these are connected to a DC power supply with voltage V as shown in Figure 21-9. If the total current in this circuit is 2.0 A, what is the current through the 4.0- Ω resistor?

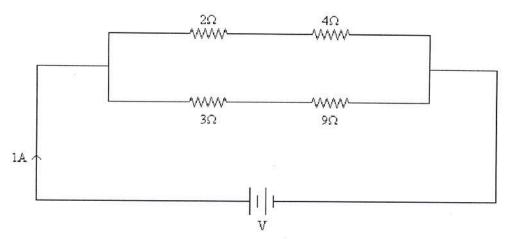
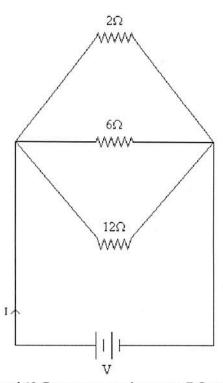

40) _____

Figure 21-10

41) A 4- Ω resistor is connected in parallel with a 12- Ω resistor and this combination is connected to a 6-V DC power supply as shown in Figure 21-10. What is the current through the 12- Ω resistor?


Figure 21-11

42) Four resistors of values 2Ω , 4Ω , 3Ω , and 9Ω are connected across a DC source with voltage V as shown in Figure 21–11. If the total current through this circuit is 1 A, what is the value of the voltage V?

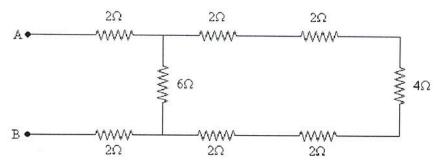

42) _____

Figure 21-12

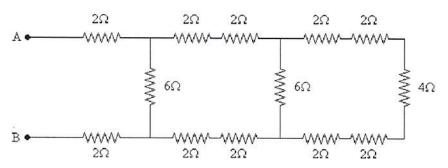

43) Three resistors of values 2 Ω , 6 Ω and 12 Ω are connected across a DC voltage source as shown in Figure 21–12. If the total current through the circuit is I = 5.0 A, what is the current through the 12 Ω resistor?

Figure 21-13

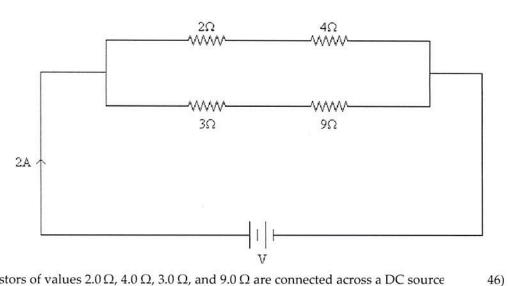

44) A number of resistors are connected across points A and B as shown in Figure 21–13. What is the equivalent resistance between points A and B?

Figure 21-14

45) A number of resistors are connected across points A and B as shown in Figure 21–14. What the equivalent resistance between points A and B?

Figure 21-15

46) Four resistors of values 2.0Ω , 4.0Ω , 3.0Ω , and 9.0Ω are connected across a DC source with voltage V as shown in Figure 21–15. If the total current through this circuit is 2.0 A, what is the current through the $4-\Omega$ resistor?

	47) The potential difference between the ends of a resistor is 9 V when a current of 1 A flows through it. What is the value of that resistor?	47) _	
	48) The resistance of a 100-cm wire of cross sectional area 2×10^{-6} m ² is 400 Ω . What is the resistivity of the material of this wire?	48) _	,
	49) The resistivity of the material of a wire is $1.76 \times 10^{-8} \Omega m$. If the diameter of the wire is $2 \times 10^{-3} m$ and its length is $2 m$, what is its resistance?	49) _	
	50) The resistivity of a 1.0 m long wire is $1.72 \times 10^{-8} \Omega m$ and its cross sectional area is $2.0 \times 10^{-6} m^2$. If the wire carries a current of 0.20 A, what is the voltage across the wire?	50) _	
TRUE	/FALSE. Write 'T' if the statement is true and 'F' if the statement is false		
	51) The resistivity of the material of a wire is inversely proportional to the resistance of the wire		51)
	52) Four unequal resistors connected in series have same current but different voltages		52)
	53) Four equal resistors connected in series have same current and same voltage across each resis	stor	53)
	54) Four equal resistors connected across a DC voltage source in either series or parallel will have equal voltage drops across each resistor.	ŧ	54)
	55) Kirchhoff's voltage rule is an example of conservation of energy.		55)
SHOI	RT ANSWER. Write the word or phrase that best completes each statement or answers the que	stion	
	56) A wire of resistivity ϱ must be replaced in a circuit by a wire four times as long. If, however, the total resistance is to remain as before, the diameter of the new wire must	56) _	
	57) The length of a certain wire is kept same while its radius is doubled. What is the change ir the resistance of this wire?	57) _	
	58) The length of a certain wire is doubled while its radius is kept constant. What is the change in the resistance of this wire?	58) _	
	59) The length of a certain wire is doubled and at the same time its radius is also doubled What is the change in the resistance of this wire?	⁵⁹⁾ -	
	60) The length of a certain wire is doubled and at the same time its radius is reduced by ε factor of 2. What is the change in the resistance of this wire?	60) .	
	61) The length of a certain wire is doubled and at the same time its radius is increased by ε factor of 4. What is the change in the resistance of this wire?	61) .	
	62) When the current through a resistor is increased by a factor of 4, the power dissipated by i	62) .	

Answer Key

Testname: UNTITLED1

- 1) FALSE
- 2) 3.1 x 10²⁰
- 3) 1.8 A
- 4) 0.7 A
- 5) 4 V
- 6) 12 V
- 7) $-2 I_1 2I_2 = 0$
- $8)80\Omega$
- 9) 2.0 A
- 10) 56 V 11) 42 V
- 12) 3.7 A
- 13) 7.3 A
- 14) 5.0Ω
- 15) 1.6 A
- 16) 1.3 A
- 17) 0.28 A
- 18) 4.0Ω
- 19) 0.20 A
- 20) 0.59 A
- 21) 11 A
- 22) 220 W
- 23) 0.91 A
- 24) 121 Ω
- 25) 17.9 V
- 26) 45 mA
- 27) 0.5 A
- 28) 72 W
- 29) 10 V
- 30) 480 J
- 31) 25 V
- 32) 100 V
- 33) 0.25 A
- 34) 6 V
- 35) 20 V
- 36) 2.7 V
- 37) 1.5 A
- 38) 1.3Ω
- 39) 1.0 Ω
- 40) 1.5 A
- 41) 0.5 A
- 42) 4 V
- 43) 0.6 A
- 44) 8 Ω
- $45) 8 \Omega$
- 46) 1.3 A
- 47) 9 Ω
- 48) $8 \times 10^{-4} \Omega m$
- 49) 0.0112Ω

Answer Key

Testname: UNTITLED1

- 50) 1.7 mV
- 51) FALSE
- 52) TRUE
- 53) TRUE
- 54) TRUE
- 55) TRUE
- 56) be two times larger.
- 57) It is reduced by a factor of 4.
- 58) It is doubled.
- 59) It is reduced by a factor of 2.
- 60) It increases by a factor of 8.
- 61) It is reduced by a factor of 8.
- 62) increases by a factor of 16.