SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question

1) The electron-volt is a unit of

1)

2) A negative charge, if free, tries to move

- 2) _____
- 3) Two electric charges each equal to +Q, are separated by a distance d. If you make a graph of the electric potential as a function of the distance along the line connecting the two charges, the point exactly midway between the two charges would

3) _____

Figure 20-2

- 4) The equipotential surfaces between two spherical conductors are shown in Figure 2(-2, with the value of the potential marked for each line. What is the direction of the electric field at point F?
- 4) _____
- 5) A capacitor consists of a set of two parallel plates of area *A* separated by a distance *d*. This capacitor is connected to a battery that maintains a constant potential difference between the plates. If the separation between the plates is doubled, the magnitude of the charge on the plates will
- 5) _____
- 6) Which of the following will increase the capacitance between the plates of a parallel plate capacitor?
- 6) _____
- 7) A capacitor consists of a set of two parallel plates of area *A* separated by a distance *d*. This capacitor is connected to a battery and charged until its plates carry charges+*Q* and -*Q*. If the separation between the plates is doubled, the electrical energy stored in the capacitor will
- 7) _____
- 8) An electron is carried from the positive terminal to the negative terminal of a 9 V battery How much work is required in carrying this electron?
- 8) _____
- 9) A proton falls through a potential drop of 400 V. How much is the change of potential energy of this proton in falling through this potential drop?
- 9) _____

- 10) At a certain point in space the electric potential is 20 V. A 4.0-μC charge is brought from infinity to that point. What is the electric potential energy of this charge at that point?
- 10) _____
- 11) The potential energy at x = 8 m is -2000 V and at x = 2 m is +400 V. What is the magnitude and direction of the electric field?
- 11) _____
- 12) An electron is initially at rest. It is accelerated through a potential difference of 400 V. What is the kinetic energy of this electron?
- 12) _____
- 13) An electron, initially at rest is accelerated through a potential difference of 550 V. What is the speed of the electron due to this potential difference?

Figure 20-3

- 14) Four equal point charges of magnitude $6.00\,\mu\text{C}$ are placed at the corners of a square $2.00\,\text{m}$ on each side, as shown in Figure 20–3. What is the electric potential of these charges at the center of this square?
- 14) _____
- 15) A +8.00- μ C charge is situated along the +y-axis at y = 0.400 m. What is the electric potential at the origin because of this charge?
- 15) _____

Figure 20-13

- 16) The equipotential surfaces between two spherical conductors are shown in Figure 2(-13, with the value of the potential marked for each line. What is the potential difference between points G and D?
- 16) _____
- 17) The potential difference between the plates of a parallel plate capacitor with the plate separation of 6 cm is 60 V. What is the electric field between the plates of this capacitor?
- 17) _____
- 18) The magnitude of the charge on each plate of a parallel plate capacitor is $4\,\mu\text{C}$ and the potential difference between the plates is 80 V. What is the capacitance of this capacitor?
- 18)
- 19) A 20-μF capacitor has a charge of 60 μC. How much energy is stored in this capacitor?
- 19)
- 20) A parallel plate capacitor has a potential difference between the plates of 80 V. If the charge on one of the plates of the capacitor is +8.0 μ C, what is the electrical energy stored by this capacitor?
- 20) _____
- 21) A $4-\mu F$ capacitor has a potential drop of 20 V between its plates. The electric potential energy stored in this capacitor is:
- 21) _____

Answer Key

Testname: UNTITLED1

- 1) energy.
- 2) from low potential to high potential.
- 3) be a relative minimum.
- 4) towards G
- 5) be cut in half.
- 6) Introduce a dielectric material between the plates.
- 7) double.
- 8) 14.4 × 10⁻¹⁹ J
- 9) -6.4 × 10⁻¹⁶ J
- 10) 80 μJ
- 11) 400 V/m directed parallel to the +x-axis
- 12) 6.4 × 10⁻¹⁷ J
- 13) 13.9 × 10⁶ m/s
- 14) 153 kV
- 15) $+180 \times 10^3 \text{ V}$
- 16) -160 V
- 17) 1000 V/m
- 18) 5×10^{-8} F
- 19) 90 µJ
- 20) 320 × 10⁻⁶ J
- 21) 800 μJ